Well...maybe we can.....
y=(-6/y)²-1 simpify
y = 36/y^2 - 1 multiply through by y^2
y^3 = 36 - y^2
And using the onsite solver, we have one real solution and two non-real solutions...
y3+y2−36=0⇒{y=−2(32)×i−2y=2(32)×i−2y=3}⇒{y=−2−2.8284271247461901iy=−2+2.8284271247461901iy=3}
y=(-6/y)²-1
y=(−6y)2−1y=36y2−1y3=36−y2y≠0y3+y2−36=0
now I am going to use reaminder theorum to look for a factor
If y=3 then 27+9-36=0 great (y-3) is a factor and 3 is a root
(y3+y2−36)÷(y−3)=y2+4y+12$Iusedpolynomialdivisiontogetthis$soy3+y2−36=(y−3)(y2+4y+12)$Nowfindrootsof$y2+4y+12△=16−48<0$thereforetherearenorealrootstothis$so$Theonlyrealsolutionis$y=3
check