We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
470
1
avatar

You deposit $100 at the end of each quarter in a sinking fund earning 4% compounded quarterly. How many quarterly deposits must you make in order to reach your goal of saving $10,000? Round your answer off to the nearest whole number.

 Sep 16, 2014

Best Answer 

 #1
avatar+101741 
+5

This is the furure value of an ordinary annuity problem

$$\\S=R\left[\frac{(1+i)^n-1}{i}\right]\\\\
R=100\;\;i=0.04/4=0.01\;\;S=10000,\;\;n=? \;quarters\\\\\\
10000=100\left[\frac{(1.01)^n-1}{0.01}\right]\\\\
1=(1.01)^n-1\\\\
2=(1.01)^n\\\\
log2=log(1.01)^n\\\\
log2=nlog(1.01)\\\\
n=\frac{log2}{log1.01}\\\\$$

 

$${\frac{{log}_{10}\left({\mathtt{2}}\right)}{{log}_{10}\left({\mathtt{1.01}}\right)}} = {\mathtt{69.660\: \!716\: \!893\: \!574\: \!830\: \!3}}$$

 

It will take 70

 

70/4=17.5 years

 Sep 16, 2014
 #1
avatar+101741 
+5
Best Answer

This is the furure value of an ordinary annuity problem

$$\\S=R\left[\frac{(1+i)^n-1}{i}\right]\\\\
R=100\;\;i=0.04/4=0.01\;\;S=10000,\;\;n=? \;quarters\\\\\\
10000=100\left[\frac{(1.01)^n-1}{0.01}\right]\\\\
1=(1.01)^n-1\\\\
2=(1.01)^n\\\\
log2=log(1.01)^n\\\\
log2=nlog(1.01)\\\\
n=\frac{log2}{log1.01}\\\\$$

 

$${\frac{{log}_{10}\left({\mathtt{2}}\right)}{{log}_{10}\left({\mathtt{1.01}}\right)}} = {\mathtt{69.660\: \!716\: \!893\: \!574\: \!830\: \!3}}$$

 

It will take 70

 

70/4=17.5 years

Melody Sep 16, 2014

23 Online Users

avatar