gibsonj338

avatar
Usernamegibsonj338
Score1904
Membership
Stats
Questions 101
Answers 460

 #1
avatar+1904 
+5

$${\mathtt{30.44}}{\mathtt{\,\small\textbf+\,}}{\mathtt{28.07}}{\mathtt{\,\small\textbf+\,}}{\mathtt{9.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{95.45}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{11.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{30.99}}{\mathtt{\,\small\textbf+\,}}{\mathtt{16.91}}{\mathtt{\,\small\textbf+\,}}{\mathtt{25.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{20.99}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3.75}}{\mathtt{\,\small\textbf+\,}}{\mathtt{83.75}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.26}}{\mathtt{\,\small\textbf+\,}}{\mathtt{15.9}}{\mathtt{\,\small\textbf+\,}}{\mathtt{60.5}}{\mathtt{\,\small\textbf+\,}}{\mathtt{80.7}}{\mathtt{\,\small\textbf+\,}}{\mathtt{35.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{22}}$$

 

$${\mathtt{58.51}}{\mathtt{\,\small\textbf+\,}}{\mathtt{9.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{95.45}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{11.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{30.99}}{\mathtt{\,\small\textbf+\,}}{\mathtt{16.91}}{\mathtt{\,\small\textbf+\,}}{\mathtt{25.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{20.9}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3.75}}{\mathtt{\,\small\textbf+\,}}{\mathtt{83.75}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.26}}{\mathtt{\,\small\textbf+\,}}{\mathtt{15.9}}{\mathtt{\,\small\textbf+\,}}{\mathtt{60.5}}{\mathtt{\,\small\textbf+\,}}{\mathtt{80.7}}{\mathtt{\,\small\textbf+\,}}{\mathtt{35.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{22}}$$

 

$${\mathtt{68.46}}{\mathtt{\,\small\textbf+\,}}{\mathtt{95.45}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{11.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{30.99}}{\mathtt{\,\small\textbf+\,}}{\mathtt{16.91}}{\mathtt{\,\small\textbf+\,}}{\mathtt{25.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{20.9}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3.75}}{\mathtt{\,\small\textbf+\,}}{\mathtt{83.75}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.26}}{\mathtt{\,\small\textbf+\,}}{\mathtt{15.9}}{\mathtt{\,\small\textbf+\,}}{\mathtt{60.5}}{\mathtt{\,\small\textbf+\,}}{\mathtt{80.7}}{\mathtt{\,\small\textbf+\,}}{\mathtt{35.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{22}}$$

 

$${\mathtt{163.91}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{11.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{30.99}}{\mathtt{\,\small\textbf+\,}}{\mathtt{16.91}}{\mathtt{\,\small\textbf+\,}}{\mathtt{25.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{20.9}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3.75}}{\mathtt{\,\small\textbf+\,}}{\mathtt{83.75}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.26}}{\mathtt{\,\small\textbf+\,}}{\mathtt{15.9}}{\mathtt{\,\small\textbf+\,}}{\mathtt{60.5}}{\mathtt{\,\small\textbf+\,}}{\mathtt{80.7}}{\mathtt{\,\small\textbf+\,}}{\mathtt{35.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{22}}$$

 

$${\mathtt{171.86}}{\mathtt{\,\small\textbf+\,}}{\mathtt{11.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{30.99}}{\mathtt{\,\small\textbf+\,}}{\mathtt{16.91}}{\mathtt{\,\small\textbf+\,}}{\mathtt{25.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{20.9}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3.75}}{\mathtt{\,\small\textbf+\,}}{\mathtt{83.75}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.26}}{\mathtt{\,\small\textbf+\,}}{\mathtt{15.9}}{\mathtt{\,\small\textbf+\,}}{\mathtt{60.5}}{\mathtt{\,\small\textbf+\,}}{\mathtt{80.7}}{\mathtt{\,\small\textbf+\,}}{\mathtt{35.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{22}}$$

 

$${\mathtt{183.81}}{\mathtt{\,\small\textbf+\,}}{\mathtt{30.99}}{\mathtt{\,\small\textbf+\,}}{\mathtt{16.91}}{\mathtt{\,\small\textbf+\,}}{\mathtt{25.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{20.9}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3.75}}{\mathtt{\,\small\textbf+\,}}{\mathtt{83.75}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.26}}{\mathtt{\,\small\textbf+\,}}{\mathtt{15.9}}{\mathtt{\,\small\textbf+\,}}{\mathtt{60.5}}{\mathtt{\,\small\textbf+\,}}{\mathtt{80.7}}{\mathtt{\,\small\textbf+\,}}{\mathtt{35.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{22}}$$

 

$${\mathtt{214.8}}{\mathtt{\,\small\textbf+\,}}{\mathtt{16.91}}{\mathtt{\,\small\textbf+\,}}{\mathtt{25.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{20.9}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3.75}}{\mathtt{\,\small\textbf+\,}}{\mathtt{83.75}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.26}}{\mathtt{\,\small\textbf+\,}}{\mathtt{15.9}}{\mathtt{\,\small\textbf+\,}}{\mathtt{60.5}}{\mathtt{\,\small\textbf+\,}}{\mathtt{80.7}}{\mathtt{\,\small\textbf+\,}}{\mathtt{35.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{22}}$$

 

$${\mathtt{231.71}}{\mathtt{\,\small\textbf+\,}}{\mathtt{25.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{20.9}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3.75}}{\mathtt{\,\small\textbf+\,}}{\mathtt{83.75}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.26}}{\mathtt{\,\small\textbf+\,}}{\mathtt{15.9}}{\mathtt{\,\small\textbf+\,}}{\mathtt{60.5}}{\mathtt{\,\small\textbf+\,}}{\mathtt{80.7}}{\mathtt{\,\small\textbf+\,}}{\mathtt{35.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{22}}$$

 

$${\mathtt{257.66}}{\mathtt{\,\small\textbf+\,}}{\mathtt{20.9}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3.75}}{\mathtt{\,\small\textbf+\,}}{\mathtt{83.75}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.26}}{\mathtt{\,\small\textbf+\,}}{\mathtt{15.9}}{\mathtt{\,\small\textbf+\,}}{\mathtt{60.5}}{\mathtt{\,\small\textbf+\,}}{\mathtt{80.7}}{\mathtt{\,\small\textbf+\,}}{\mathtt{35.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{22}}$$

 

$${\mathtt{278.56}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3.75}}{\mathtt{\,\small\textbf+\,}}{\mathtt{83.75}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.26}}{\mathtt{\,\small\textbf+\,}}{\mathtt{15.9}}{\mathtt{\,\small\textbf+\,}}{\mathtt{60.5}}{\mathtt{\,\small\textbf+\,}}{\mathtt{80.7}}{\mathtt{\,\small\textbf+\,}}{\mathtt{35.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{22}}$$

 

$${\mathtt{282.31}}{\mathtt{\,\small\textbf+\,}}{\mathtt{83.75}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.26}}{\mathtt{\,\small\textbf+\,}}{\mathtt{15.9}}{\mathtt{\,\small\textbf+\,}}{\mathtt{60.5}}{\mathtt{\,\small\textbf+\,}}{\mathtt{80.7}}{\mathtt{\,\small\textbf+\,}}{\mathtt{35.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{22}}$$

 

$${\mathtt{366.06}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7.95}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.26}}{\mathtt{\,\small\textbf+\,}}{\mathtt{15.9}}{\mathtt{\,\small\textbf+\,}}{\mathtt{60.5}}{\mathtt{\,\small\textbf+\,}}{\mathtt{80.7}}{\mathtt{\,\small\textbf+\,}}{\mathtt{35.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{22}}$$

 

$${\mathtt{374.01}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.26}}{\mathtt{\,\small\textbf+\,}}{\mathtt{15.9}}{\mathtt{\,\small\textbf+\,}}{\mathtt{60.5}}{\mathtt{\,\small\textbf+\,}}{\mathtt{80.7}}{\mathtt{\,\small\textbf+\,}}{\mathtt{35.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{22}}$$

 

$${\mathtt{427.27}}{\mathtt{\,\small\textbf+\,}}{\mathtt{15.9}}{\mathtt{\,\small\textbf+\,}}{\mathtt{60.5}}{\mathtt{\,\small\textbf+\,}}{\mathtt{80.7}}{\mathtt{\,\small\textbf+\,}}{\mathtt{35.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{22}}$$

 

$${\mathtt{443.17}}{\mathtt{\,\small\textbf+\,}}{\mathtt{60.5}}{\mathtt{\,\small\textbf+\,}}{\mathtt{80.7}}{\mathtt{\,\small\textbf+\,}}{\mathtt{35.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{22}}$$

 

$${\mathtt{503.67}}{\mathtt{\,\small\textbf+\,}}{\mathtt{80.7}}{\mathtt{\,\small\textbf+\,}}{\mathtt{35.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{22}}$$

 

$${\mathtt{584.37}}{\mathtt{\,\small\textbf+\,}}{\mathtt{35.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{22}}$$

 

$${\mathtt{619.85}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53.48}}{\mathtt{\,\small\textbf+\,}}{\mathtt{22}}$$

 

$${\mathtt{673.33}}{\mathtt{\,\small\textbf+\,}}{\mathtt{22}}$$

 

$${\mathtt{695.33}}$$

.
Mar 23, 2015
 #1
avatar+1904 
+10

First Problem

 

$${\mathtt{3.5}}{\mathtt{\,\times\,}}{{\mathtt{10}}}^{{\mathtt{7}}}$$

 

$${\mathtt{3.5}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}$$

 

$${\mathtt{35}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}$$

 

$${\mathtt{350}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}$$

 

$${\mathtt{3\,500}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}$$

 

$${\mathtt{35\,000}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}$$

 

$${\mathtt{350\,000}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}$$

 

$${\mathtt{3\,500\,000}}{\mathtt{\,\times\,}}{\mathtt{10}}$$

 

$${\mathtt{35\,000\,000}}$$

 

Second Problem

 

$${\mathtt{6}}{\mathtt{\,\times\,}}{{\mathtt{10}}}^{-{\mathtt{3}}}$$

 

$${\mathtt{6}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{{\mathtt{10}}}^{{\mathtt{3}}}}}\right)$$

 

$${\mathtt{6}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{\left({\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}\right)}}\right)$$

 

$${\mathtt{6}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{\left({\mathtt{100}}{\mathtt{\,\times\,}}{\mathtt{10}}\right)}}\right)$$

 

$${\mathtt{6}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{1\,000}}}}\right)$$

 

$${\frac{{\mathtt{6}}}{{\mathtt{1\,000}}}}$$

 

$${\frac{{\mathtt{3}}}{{\mathtt{500}}}}$$

 

$${\mathtt{0.006}}$$

.
Mar 23, 2015