+0

# what is 3.5 times 10 to the 7the power and 6.0 times 10 to the negative 3 power

0
627
2

what is 3.5 times 10 to the 7the power and 6.0 times 10 to the negative 3 power

Mar 23, 2015

#1
+1884
+10

First Problem

$${\mathtt{3.5}}{\mathtt{\,\times\,}}{{\mathtt{10}}}^{{\mathtt{7}}}$$

$${\mathtt{3.5}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}$$

$${\mathtt{35}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}$$

$${\mathtt{350}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}$$

$${\mathtt{3\,500}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}$$

$${\mathtt{35\,000}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}$$

$${\mathtt{350\,000}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}$$

$${\mathtt{3\,500\,000}}{\mathtt{\,\times\,}}{\mathtt{10}}$$

$${\mathtt{35\,000\,000}}$$

Second Problem

$${\mathtt{6}}{\mathtt{\,\times\,}}{{\mathtt{10}}}^{-{\mathtt{3}}}$$

$${\mathtt{6}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{{\mathtt{10}}}^{{\mathtt{3}}}}}\right)$$

$${\mathtt{6}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{\left({\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}\right)}}\right)$$

$${\mathtt{6}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{\left({\mathtt{100}}{\mathtt{\,\times\,}}{\mathtt{10}}\right)}}\right)$$

$${\mathtt{6}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{1\,000}}}}\right)$$

$${\frac{{\mathtt{6}}}{{\mathtt{1\,000}}}}$$

$${\frac{{\mathtt{3}}}{{\mathtt{500}}}}$$

$${\mathtt{0.006}}$$

.
Mar 23, 2015

#1
+1884
+10

First Problem

$${\mathtt{3.5}}{\mathtt{\,\times\,}}{{\mathtt{10}}}^{{\mathtt{7}}}$$

$${\mathtt{3.5}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}$$

$${\mathtt{35}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}$$

$${\mathtt{350}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}$$

$${\mathtt{3\,500}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}$$

$${\mathtt{35\,000}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}$$

$${\mathtt{350\,000}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}$$

$${\mathtt{3\,500\,000}}{\mathtt{\,\times\,}}{\mathtt{10}}$$

$${\mathtt{35\,000\,000}}$$

Second Problem

$${\mathtt{6}}{\mathtt{\,\times\,}}{{\mathtt{10}}}^{-{\mathtt{3}}}$$

$${\mathtt{6}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{{\mathtt{10}}}^{{\mathtt{3}}}}}\right)$$

$${\mathtt{6}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{\left({\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{10}}\right)}}\right)$$

$${\mathtt{6}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{\left({\mathtt{100}}{\mathtt{\,\times\,}}{\mathtt{10}}\right)}}\right)$$

$${\mathtt{6}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{1\,000}}}}\right)$$

$${\frac{{\mathtt{6}}}{{\mathtt{1\,000}}}}$$

$${\frac{{\mathtt{3}}}{{\mathtt{500}}}}$$

$${\mathtt{0.006}}$$

gibsonj338 Mar 23, 2015
#2
+95356
0