gibsonj338

avatar
Usernamegibsonj338
Score1904
Membership
Stats
Questions 101
Answers 460

 #7
avatar+1904 
+5

1) \({-3x}^{2}-15x=-42\)

There are many ways to solve this equation.  Today, I feel like completing the square so I will do that.

 

To complete the square, divide each term by the leading coeficent in the first term.

 

\(\frac{-3x{}^{2}}{-3}-\frac{15x}{-3}=\frac{-42}{-3}\)

 

\({x}^{2}-(-5x)=14\)

 

\({x}^{2}+5x=14\)

 

Now take the term that has the x and divide its coeficent by two and then square it.

 

\(({\frac{5}{2}})^{2}\)

 

\(({2.5})^{2}\)

 

\(6.25\)

 

Take the answer and add to both side of the equation.

 

\({x}^{2}+5x+6.25=14+6.25\)

 

\({x}^{2}+5x+6.25=20.25\)

 

Factor the left side

 

\(({x+2.5})^{2}=20.25\)

 

Take the square root of both sides.

 

\(\sqrt{({x+2.5})^{2}}=\sqrt{20.25}\)

 

\(x+2.5=±4.5\)

 

Seperate the equation into two equations and solve for x.

 

\(x+2.5-2.5=4.5-2.5\)

 

\(x+0=2\)

 

\(x=2\)

 

\(x+2.5-2.5=-4.5-2.5\)

 

\(x+0=-7\)

 

\(x=-7\)

 

\(x=2\) or \(x=-7\)

 

Subsitute 2 and -7 for x and check to see if these solutions are true.

 

\({-3(2)}^{2}-15(2)=-42\)

 

\(-3(4)-15(2)=-42\)

 

\(-3(4)-30=-42\)

 

\(-12-30=-42\)

 

\(-42=-42\)

 

\({-3(-7)}^{2}-15(-7)=-42\)

 

\(-3(49)-15(-7)=-42\)

 

\(-3(49)-(-105)=-42\)

 

\(-147-(-105)=-42\)

 

\(-147+105=-42\)

 

\(-42=-42\)

 

Both 2 and -7 work, so those are both solutions.

 

2) \({x}^{2}-2x-8=0\)

 

There are many ways to solve this equation.  The easiest way to solve this is to factor the left side.

 

\((x+2)(x-4)=0\)

 

Solve for x.

 

\(x+2 = 0\)

 

\(x+2-2=0-2\)

 

\(x+0=-2\)

 

\(x=-2\)

 

\(x-4=0\)

 

\(x-4+4=0+4\)

 

\(x-0=4\)

 

\(x=4\)

 

\(x=-2\) or \(x=4\)

 

Subsitute -2 and 4 for x and check to see if these solutions are true.

 

\({(-2)}^{2}-2(-2)-8=0\)

 

\(4-2(-2)-8=0\)

 

\(4-(-4)-8=0\)

 

\(4+4-8=0\)

 

\(8-8=0\)

 

\(0=0\)

 

\({4}^{2}-2(4)-8=0\)

 

\(16-2(4)-8=0\)

 

\(16-8-8=0\)

 

\(8-8=0\)

 

\(0=0\)

 

Both -2 and 4 work, so those are both solutions.

 

3) \(\sqrt{x}+6=x\)

 

Subtract 6 to both sides.

 

\(\sqrt{x}+6-6=x-6\)

 

\(\sqrt{x}+0=x-6\)

 

\(\sqrt{x}=x-6\)

 

Square both sides.

 

\({\sqrt{x}}^{2}={(x-6)}^{2}\)

 

\(x={(x-6)}^{2}\)

 

Expand the right side

 

\(x=(x-6)(x-6)\)

 

\(x={x}^{2}-6x-6x+36\)

 

\(x={x}^{2}-12x+36\)

 

Subtract x^2-12x+36 to both sides.

 

\(x-({x}^{2}-12x+36)={x}^{2}-12x+36-({x}^{2}-12x+36)\)

 

\(x-{x}^{2}+12x-36={x}^{2}-12x+36-{x}^{2}+12x-36\)

 

Combine like terms.

 

\(-{x}^{2}+13x-36={0x}^{2}-0x+0\)

 

\(-{x}^{2}+13x-36=0-0x+0\)

 

\(-{x}^{2}+13x-36=0-0+0\)

 

\(-{x}^{2}+13x-36=0+0\)

 

\(-{x}^{2}+13x-36=0\)

 

Divide both sides by -1. 

 

\(\frac{{-x}^{2}}{-1}+\frac{13x}{-1}-\frac{36}{-1}=\frac{0}{-1}\)

 

\({x}^{2}-13x+36=0\)

 

You can also multiply both sides by -1 and will get the same result.

 

\(-{x}^{2}\times-1+13x\times-1-36\times-1=0\times-1\)

 

\({x}^{2}-13x+36=0\)

 

Factor the left side.

 

\((x-9)(x-4)=0\)

 

Solve for x.

 

\(x-9=0\)

 

\(x-9+9=0+9\)

 

\(x-0=9\)

 

\(x=9\)

 

\(x-4=0\)

 

\(x-4+4=0+4\)

 

\(x-0=4\)

 

\(x=4\)

 

\(x=9\) or \(x=4\)

 

Subsitute 9 and 4 for x and check to see if these solutions are true.

 

\(\sqrt{9}+6=9\)

 

\(3+6=9\)

 

\(9=9\)

 

\(\sqrt{4}+6=4\)

 

\(2+6=4\)

 

\(8=4\)

 

Since 9 works and 4 does not work, the only solution is 9.

Jun 6, 2016
 #1
avatar+1904 
0
Jun 3, 2016