\(\frac{\frac{1}{4}}{7}\)
\(\frac{1}{4}\times\frac{1}{7}\)
\(\frac{1}{28}\)
\(0.035714285714285...\)
\(x=-5\), \(y=7\), \(z=-4\)
a. \(x(y-z)\)
\(-5(7-(-4))\)
\(-5(7+4)\)
\(-5(11)\)
\(-55\)
b. \(-4x+3y-2z\)
\(-4(-5)+3(7)-2(-4)\)
\(20+3(7)-2(-4)\)
\(20+21-2(-4)\)
\(20+21-(-8)\)
\(20+21+8\)
\(41+8\)
\(49\)
Thanks asinus for the complement.
Do you mean \(-7x+4<18\) or \(-7x+4≤18\)?
I will bo both
\(-7x+4<18\)
\(-7x<14\)
\(x>-2\)
Here is the graph
https://www.desmos.com/calculator/yfo1h54mva
\(-7x+4≤18\)
\(-7x≤14\)
\(x≥-2\)
https://www.desmos.com/calculator/zc53hkuztg
\({3}^{4b}={9}^{b+3}\)
\({3}^{4b}={3}^{2(b+3)}\)
\(4b=2(b+3)\)
\(4b=2b+6\)
\(2b=6\)
\(b=3\)
\(\frac{1}{2}\times\frac{1}{2}\times\frac{1}{2}\)
\(\frac{1}{4}\times\frac{1}{2}\)
\(\frac{1}{8}\)
\(\frac{0}{0}\)
\(Undefined\)
If a horse runs 35mph, 35 mies will be traveled in one hour.
\(6-\frac{-8}{-7}\)
\(6-\frac{8}{7}\)
\(\frac{42}{7}-\frac{8}{7}\)
\(\frac{34}{7}\)
\(4.8571428571428571...\)
\(3\times3\times3\times3\) or \({3}^{4}\)
\(9\times3\times3\)
\(27\times3\)
\(81\)