+0  
 
0
87
1
avatar

how do you expand, then express in a single trig ratio and/or constant?

4sinxcosx (sec^3x cosx + cscxsecx)

 Nov 29, 2018

Best Answer 

 #1
avatar+21191 
+8

how do you expand, then express in a single trig ratio and/or constant?
\(4 \sin(x) \cos(x) \Big(\sec^3(x) \cos(x) + \csc(x) \sec(x)\Big)\)

 

\(\text{Formula:}\\ \text{$\csc(x) = \dfrac{1}{\sin(x)} $} \\ \text{$\sec(x) = \dfrac{1}{\cos(x)} $} \\\)

 

\(\begin{array}{|rcll|} \hline && 4 \cdot\sin(x) \cos(x) \Big(\sec^3(x) \cos(x) + \csc(x) \sec(x)\Big) \\\\ &=& 4 \cdot\sin(x) \cos(x) \left( \dfrac{\cos(x)}{\cos^3(x)} + \dfrac{1}{\cos(x)\sin(x)} \right) \\\\ &=& 4 \cdot\sin(x) \cos(x) \left( \dfrac{1}{\cos^2(x)} + \dfrac{1}{\cos(x)\sin(x)} \right) \\\\ &=& 4 \cdot\left( \dfrac{\sin(x) \cos(x)}{\cos^2(x)} + \dfrac{\sin(x) \cos(x)}{\cos(x)\sin(x)} \right) \\\\ &=& 4 \cdot\left( \dfrac{\sin(x)}{\cos(x)} + 1 \right) \quad | \quad \dfrac{\sin(x)}{\cos(x)}=\tan(x) \\\\ &\mathbf{=}& \mathbf{ 4 \cdot \Big( \tan(x) + 1 \Big )} \\ \hline \end{array}\)

 

laugh

 Nov 29, 2018
 #1
avatar+21191 
+8
Best Answer

how do you expand, then express in a single trig ratio and/or constant?
\(4 \sin(x) \cos(x) \Big(\sec^3(x) \cos(x) + \csc(x) \sec(x)\Big)\)

 

\(\text{Formula:}\\ \text{$\csc(x) = \dfrac{1}{\sin(x)} $} \\ \text{$\sec(x) = \dfrac{1}{\cos(x)} $} \\\)

 

\(\begin{array}{|rcll|} \hline && 4 \cdot\sin(x) \cos(x) \Big(\sec^3(x) \cos(x) + \csc(x) \sec(x)\Big) \\\\ &=& 4 \cdot\sin(x) \cos(x) \left( \dfrac{\cos(x)}{\cos^3(x)} + \dfrac{1}{\cos(x)\sin(x)} \right) \\\\ &=& 4 \cdot\sin(x) \cos(x) \left( \dfrac{1}{\cos^2(x)} + \dfrac{1}{\cos(x)\sin(x)} \right) \\\\ &=& 4 \cdot\left( \dfrac{\sin(x) \cos(x)}{\cos^2(x)} + \dfrac{\sin(x) \cos(x)}{\cos(x)\sin(x)} \right) \\\\ &=& 4 \cdot\left( \dfrac{\sin(x)}{\cos(x)} + 1 \right) \quad | \quad \dfrac{\sin(x)}{\cos(x)}=\tan(x) \\\\ &\mathbf{=}& \mathbf{ 4 \cdot \Big( \tan(x) + 1 \Big )} \\ \hline \end{array}\)

 

laugh

heureka Nov 29, 2018

6 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.