We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
157
1
avatar

how do you expand, then express in a single trig ratio and/or constant?

4sinxcosx (sec^3x cosx + cscxsecx)

 Nov 29, 2018

Best Answer 

 #1
avatar+22290 
+9

how do you expand, then express in a single trig ratio and/or constant?
\(4 \sin(x) \cos(x) \Big(\sec^3(x) \cos(x) + \csc(x) \sec(x)\Big)\)

 

\(\text{Formula:}\\ \text{$\csc(x) = \dfrac{1}{\sin(x)} $} \\ \text{$\sec(x) = \dfrac{1}{\cos(x)} $} \\\)

 

\(\begin{array}{|rcll|} \hline && 4 \cdot\sin(x) \cos(x) \Big(\sec^3(x) \cos(x) + \csc(x) \sec(x)\Big) \\\\ &=& 4 \cdot\sin(x) \cos(x) \left( \dfrac{\cos(x)}{\cos^3(x)} + \dfrac{1}{\cos(x)\sin(x)} \right) \\\\ &=& 4 \cdot\sin(x) \cos(x) \left( \dfrac{1}{\cos^2(x)} + \dfrac{1}{\cos(x)\sin(x)} \right) \\\\ &=& 4 \cdot\left( \dfrac{\sin(x) \cos(x)}{\cos^2(x)} + \dfrac{\sin(x) \cos(x)}{\cos(x)\sin(x)} \right) \\\\ &=& 4 \cdot\left( \dfrac{\sin(x)}{\cos(x)} + 1 \right) \quad | \quad \dfrac{\sin(x)}{\cos(x)}=\tan(x) \\\\ &\mathbf{=}& \mathbf{ 4 \cdot \Big( \tan(x) + 1 \Big )} \\ \hline \end{array}\)

 

laugh

 Nov 29, 2018
 #1
avatar+22290 
+9
Best Answer

how do you expand, then express in a single trig ratio and/or constant?
\(4 \sin(x) \cos(x) \Big(\sec^3(x) \cos(x) + \csc(x) \sec(x)\Big)\)

 

\(\text{Formula:}\\ \text{$\csc(x) = \dfrac{1}{\sin(x)} $} \\ \text{$\sec(x) = \dfrac{1}{\cos(x)} $} \\\)

 

\(\begin{array}{|rcll|} \hline && 4 \cdot\sin(x) \cos(x) \Big(\sec^3(x) \cos(x) + \csc(x) \sec(x)\Big) \\\\ &=& 4 \cdot\sin(x) \cos(x) \left( \dfrac{\cos(x)}{\cos^3(x)} + \dfrac{1}{\cos(x)\sin(x)} \right) \\\\ &=& 4 \cdot\sin(x) \cos(x) \left( \dfrac{1}{\cos^2(x)} + \dfrac{1}{\cos(x)\sin(x)} \right) \\\\ &=& 4 \cdot\left( \dfrac{\sin(x) \cos(x)}{\cos^2(x)} + \dfrac{\sin(x) \cos(x)}{\cos(x)\sin(x)} \right) \\\\ &=& 4 \cdot\left( \dfrac{\sin(x)}{\cos(x)} + 1 \right) \quad | \quad \dfrac{\sin(x)}{\cos(x)}=\tan(x) \\\\ &\mathbf{=}& \mathbf{ 4 \cdot \Big( \tan(x) + 1 \Big )} \\ \hline \end{array}\)

 

laugh

heureka Nov 29, 2018

9 Online Users