Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
823
3
avatar

What is the residue modulo 13 of the sum of the modulo 13 inverses of the first 12 positive integers?

Express your answer as an integer from 0 to 12 , inclusive.

 Dec 9, 2018
 #1
avatar
0

Please help me, why tan(90)=Infinity?

I typed this in calc: tan(90)

and it was equal to infinity.

 Dec 9, 2018
 #2
avatar
0

Hi guest answerer, you have not answered, you have asked a new question.

You need to post a new question of your own.

you have asked a good question ... but you need to post it properly.

 Dec 9, 2018
 #3
avatar+26396 
+10

What is the residue modulo 13 of the sum of the modulo 13 inverses of the first 12 positive integers?
Express your answer as an integer from 0 to 12 , inclusive.

 

111(mod13)221(mod13)2211(mod13)1(mod13)331(mod13)3311(mod13)1(mod13)441(mod13)4411(mod13)1(mod13)551(mod13)5511(mod13)1(mod13)661(mod13)6611(mod13)1(mod13)771(mod13)7711(mod13)1(mod13)881(mod13)8811(mod13)1(mod13)991(mod13)9911(mod13)1(mod13)10101(mod13)101011(mod13)1(mod13)11111(mod13)111111(mod13)1(mod13)12121(mod13)121211(mod13)1(mod13)


sumof the modulo 13 inverses of the first 12 positive integers=111+211+311+411+511+611+711+811+911+1011+1111+1211(mod13)=1+7+9+10+8+11+2+5+3+4+6+12(mod13)=1+2+3+4+5+6+7+8+9+10+11+12(mod13)=1+12212(mod13)=136(mod13)=0(mod13)

laugh

 Dec 10, 2018
edited by heureka  Dec 10, 2018

2 Online Users

avatar