If \(f(x)=\dfrac{a}{x+2}\), solve for the value of a so that \(f(0)=f^{-1}(3a)\).
Let's find the inverse of f(x)
y = a / ( x + 2)
y (x + 2) = a
yx + 2y = a
yx = a - 2y divide both sides by y
x = [ a - 2y] / y "swap" x and y
y = [ a - 2x] / x and this is the inverse = f-1(x)
Note that f(0) = a /2
And f-1 (3a) = [ a - 2(3a) ] 3a = -5a / 3a = -5/3
So we want to solve this
a/2 = -5/3
a = -10/3
If
\(\large{f(x)=\dfrac{a}{x+2}}\),
solve for the value of a so that
\(\large{f(0)=f^{-1}(3a)}\).
\(\begin{array}{|rcll|} \hline f\left(~ f^{-1}(x) ~\right) &=& x \quad & | \quad x = 3a \\ f\left(~ f^{-1}(3a) ~\right) &=& 3a \quad & | \quad f^{-1}(3a) = f(0) \\ f\left(~ f(0) ~\right) &=& 3a \quad & | \quad f(0) = \dfrac{a}{0+2}=\dfrac{a}{2} \\ f\left(~ \dfrac{a}{2} ~\right) &=& 3a \quad & | \quad f\left(\dfrac{a}{2} \right) = \dfrac{a}{\dfrac{a}{2}+2}=\dfrac{2a}{a+4} \\ \dfrac{2a}{a+4} &=& 3a \\ \dfrac{2 }{a+4} &=& 3 \\ 2 &=& 3 (a+4) \\ 2 &=& 3a+12 \\ 3a &=& -10 \\ \mathbf{a} &\mathbf{=}& \mathbf{-\dfrac{10}{3}} \\ \hline \end{array}\)