heureka

avatar
Usernameheureka
Score26387
Membership
Stats
Questions 17
Answers 5678

 #2
avatar+26387 
+4

Evaluate the sum

\(\large{\dfrac{6}{3^2-1}+\dfrac{6}{5^2-1}+\dfrac{6}{7^2-1}+\dfrac{6}{9^2-1}+\cdots}\)

 

\(\begin{array}{|rcll|} \hline && \dfrac{6}{3^2-1}+\dfrac{6}{5^2-1}+\dfrac{6}{7^2-1}+\dfrac{6}{9^2-1}+\cdots \\\\ &=& \dfrac{6}{(3-1)(3+1)}+\dfrac{6}{(5-1)(5+1)}+\dfrac{6}{(7-1)(7+1)}+\dfrac{6}{(9-1)(9+1)}+\cdots \\\\ &=& \dfrac{6}{2\cdot 4}+\dfrac{6}{4\cdot 6}+\dfrac{6}{6\cdot 8}+\dfrac{6}{8\cdot 10}+\cdots \\\\ &=& 6\left( \dfrac{1}{2\cdot 4}+\dfrac{1}{4\cdot 6}+\dfrac{1}{6\cdot 8}+\dfrac{1}{8\cdot 10}+\cdots \right) \\\\ &=& 6\cdot \sum \limits_{k=1}^{\infty} \dfrac{1}{2k(2k+2)} \\\\ &=& 6\cdot \sum \limits_{k=1}^{\infty} \dfrac{1}{4k(k+1)} \\\\ &=& \dfrac{6}{4}\cdot \sum \limits_{k=1}^{\infty} \dfrac{1}{k(k+1)} \\\\ &=& \dfrac{3}{2}\cdot \sum \limits_{k=1}^{\infty} \dfrac{1}{k(k+1)} \quad | \quad \boxed{\dfrac{1}{k(k+1)} = \dfrac{1}{k} - \dfrac{1}{k+1} } \\\\ &=& \dfrac{3}{2}\cdot \sum \limits_{k=1}^{\infty} \left(\dfrac{1}{k} - \dfrac{1}{k+1} \right) \\\\ &=& \dfrac{3}{2}\cdot \left[\sum \limits_{k=1}^{\infty} \left(\dfrac{1}{k} \right) - \sum \limits_{k=1}^{\infty} \left(\dfrac{1}{k+1} \right) \right] \\\\ &=& \dfrac{3}{2}\cdot \left[1+\sum \limits_{k=2}^{\infty} \left(\dfrac{1}{k} \right) - \sum \limits_{k=1}^{\infty} \left(\dfrac{1}{k+1} \right) \right] \\\\ &=& \dfrac{3}{2}\cdot \left[1+\sum \limits_{k=2}^{\infty} \left(\dfrac{1}{k} \right) - \sum \limits_{k=2}^{\infty} \left(\dfrac{1}{k} \right) \right] \\\\ &=& \dfrac{3}{2}\cdot (1+0) \\\\ &=& \dfrac{3}{2} \\ \hline \end{array}\)

 

laugh

Feb 21, 2019
 #6
avatar+26387 
+3
Feb 21, 2019