+0

(6cos 24-6sin 24)tan48

0
318
4

(6cos$${^2}$$24°-6sin$${^2}$$24°)tan48°

I used the double angle identity cos2A = cos$${^2}$$A-sin$${^2}$$

and I got 6cos2(24)°(tan48°)

I could change the tan to sin/cos but then I'm not sure what to do next?

A hint would be great! :)

Feb 21, 2019

#1
+24983
+5

(6cos224°-6sin224°)tan48°

$$\begin{array}{|rcll|} \hline &&\mathbf{ (6\cos^224^\circ-6\sin^224^\circ)\tan48^\circ } \\\\ &=& 6\cdot (\cos^224^\circ-\sin^224^\circ)\tan(48^\circ) \quad | \quad \cos(48^\circ) = \cos^2(24^\circ) - \sin^2(24^\circ) \\\\ &=& 6\cdot \cos(48^\circ)\cdot \tan(48^\circ) \quad | \quad \tan(48^\circ) = \dfrac{\sin(48^\circ)}{\cos(48^\circ)} \\\\ &=& 6\cdot \cos(48^\circ)\cdot \dfrac{\sin(48^\circ)}{\cos(48^\circ)} \\\\ &=& 6\cdot \dfrac{\sin(48^\circ)\cos(48^\circ)}{\cos(48^\circ)} \\\\ &\mathbf{=}& \mathbf{6\cdot \sin(48^\circ)} \\ \hline \end{array}$$

Feb 21, 2019
edited by heureka  Feb 21, 2019
#2
+1

I'm just wondering how was my approach incorrect?

** Isn't sine and cosine squared?

Guest Feb 21, 2019
edited by Guest  Feb 21, 2019
#3
+24983
+4

yes, sorry

but the calculation is okay.

heureka  Feb 21, 2019
#4
+109520
+2

$$(6cos^2 24°-6sin^2 24°)tan48°$$

I used the double angle identity $$cos2A = cos^2 A-sin^2 A$$

and I got $$6cos2(24)°(tan48°)$$

I could change the tan to sin/cos but then I'm not sure what to do next?

--------

$$6cos[\color{red}{2(24)}\color{black}{]°(tan48°)}\\ =6cos[\color{red}{48}\color{black}{]°(tan48°)}\\ =6cos[\color{red}{48}\color{black}{]°\cdot\frac{sin48}{cos48}}\\ =6sin48$$

.
Feb 21, 2019