We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
92
1
avatar

The line y = 12 - 2x is a tangent to two curves. Each curve has an equation of the form y= k + 6 + kx - x^2, where k is a constant. Find the two values of k.

 Feb 20, 2019
edited by Guest  Feb 20, 2019
 #1
avatar+22569 
+4

The line y = 12 - 2x is a tangent to two curves.

Each curve has an equation of the form y= k + 6 + kx - x^2, where k is a constant.

Find the two values of k.

 

The Point at the tangent:

\(\begin{array}{|rcll|} \hline y = 12-2x &=& k+6+kx-x^2 \\ 12-2x &=& k+6+kx-x^2 \\ x^2-(2+k)x+6-k &=& 0 \\\\ x &=& \dfrac{2+k\pm \sqrt{(2+k)^2-4(6-k) } } {2} \\ x &=& \dfrac{2+k\pm \sqrt{4+4k+k^2-24+4k } } {2} \\ \mathbf{x} & \mathbf{=} & \mathbf{\dfrac{2+k\pm \sqrt{k^2+8k-20 } } {2}} \\ \hline \end{array} \)

 

The slope at the tangent:

\(\begin{array}{|rcll|} \hline y &=& k+6+kx-x^2 \\ y' &=& k-2x \quad | \quad \text{The slope of the line is } -2 \\ -2 &=& k-2x \\ \mathbf{k} & \mathbf{=} & \mathbf{ 2x-2} \quad & \quad \mathbf{x=\dfrac{2+k\pm \sqrt{k^2+8k-20 } } {2}} \\\\ k & = & 2+k\pm \sqrt{k^2+8k-20 } -2 \\ \sqrt{k^2+8k-20 } &=& 0 \\ k^2+8k-20 &=& 0 \\ k &=& \dfrac{-8\pm \sqrt{64-4\cdot (-20) } } {2} \\ k &=& \dfrac{-8\pm \sqrt{144} } {2} \\ k &=& \dfrac{-8\pm 12} {2} \\\\ k_1 &=& \dfrac{-8+ 12} {2} \\ \mathbf{k_1} & \mathbf{=} & \mathbf{2} \\\\ k_2 &=& \dfrac{-8- 12} {2} \\ \mathbf{k_2} & \mathbf{=} & \mathbf{-10} \\ \hline \end{array} \)

 

The two values of k are 2 and -10

 

laugh

 Feb 20, 2019

18 Online Users

avatar
avatar