heureka

avatar
Usernameheureka
Score26367
Membership
Stats
Questions 17
Answers 5678

 #2
avatar+26367 
+4

In triangle ABC, sin A : sin B : sin C = 5 : 5 : 6. Find cos C.

 

\(\begin{array}{|lrcll|} \hline (1): & \mathbf{\dfrac{\sin(A)}{\sin(B)}} &=& \mathbf{\dfrac{5}{5}} \\\\ & \dfrac{\sin(A)}{\sin(B)} &=& 1 \\ \\ & \sin(A) &=& \sin(B) \\ & \mathbf{A} &=& \mathbf{B} \quad | \quad A=180^\circ-B \text{ is not possible}\\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \sin(C) &=& \sin\Big(180^\circ-(A+B)\Big) \quad | \quad B=A \\ \sin(C) &=& \sin\Big(180^\circ-(A+A)\Big) \\ \sin(C) &=& \sin\Big(180^\circ-(2A)\Big) \\ \sin(C) &=& \sin( 2A ) \\ \mathbf{\sin(C)} &=& \mathbf{2\sin( A )\cos(A)} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline (2): & \mathbf{\dfrac{\sin(A)}{\sin(C)}} &=& \mathbf{\dfrac{5}{6}} \\\\ & \dfrac{\sin(A)}{2\sin( A )\cos(A)} &=& \dfrac{5}{6} \\\\ & \dfrac{1}{2 \cos(A)} &=& \dfrac{5}{6} \\\\ & 2 \cos(A) &=& \dfrac{6}{5} \\\\ & \mathbf{ \cos(A) } &=& \mathbf{ \dfrac{6}{10} } \\ \hline & \sin(A) &=& \sqrt{1-\cos^2(A) } \\ & \sin(A) &=& \sqrt{1-\dfrac{6^2}{10^2} } \\ & \sin(A) &=& \sqrt{\dfrac{10^2-6^2}{10^2} } \\ & \sin(A) &=& \sqrt{\dfrac{8^2}{10^2} } \\ & \mathbf{ \sin(A) } &=& \mathbf{ \dfrac{8}{10} } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline (2): & \mathbf{\dfrac{\sin(A)}{\sin(C)}} &=& \mathbf{\dfrac{5}{6}} \quad | \quad \mathbf{ \sin(A) = \dfrac{8}{10} } \\\\ & \dfrac{\dfrac{8}{10}}{\sin(C)} &=& \dfrac{5}{6} \\\\ & \sin(C) &=& \dfrac{8}{10}\cdot \dfrac{6}{5} \\\\ & \mathbf{ \sin(C) } &=& \mathbf{ \dfrac{24}{25} } \\ \hline & \cos(C) &=& \sqrt{1-\sin^2(C) } \\ & \cos(C) &=& \sqrt{1-\dfrac{24^2}{25^2} } \\ & \cos(C) &=& \sqrt{\dfrac{25^2-24^2}{25^2} } \\ & \cos(C) &=& \sqrt{\dfrac{7^2}{25^2} } \\ & \cos(C) &=& \dfrac{7 }{25 } \\ & \mathbf{\cos(C)} &=& \mathbf{0.28} \\ \hline \end{array}\)

 

laugh

May 28, 2019
 #3
avatar+26367 
+4

In the diagram, square ABCD has sides of length 4, and triangle ABE is equilateral.
Line segments BE and AC intersect at P. Point Q is on BC so that PQ is perpendicular to BC and PQ=x.
Find the area of triangle APE in simplest radical form
.

 

\(\begin{array}{|rcll|} \hline \text{area}_{[BCP]} &=& \dfrac{4x}{2}=2x \\\\ \text{area}_{[ABC]} &=& \dfrac{4^2}{2} = 8 \\\\ \text{area}_{[ABE]} &=& \dfrac{4\cdot 2\sqrt{3}}{2} = 4\sqrt{3} \quad | \quad h = 2\sqrt{3} \\ \hline \text{area}_{[APE]} &=& \text{area}_{[ABE]}+\text{area}_{[BCP]} -\text{area}_{[ABC]}\\\\ &=& 4\sqrt{3}+2x -8 \\ \hline \end{array}\)

 

\(\mathbf{x=\ ?}\)

\(\begin{array}{|lrcll|} \hline (1): & \tan(45^\circ) &=& \dfrac{x}{CQ} \quad | \quad \tan(45^\circ) = 1 \\ & 1 &=& \dfrac{x}{CQ} \\ & \mathbf{CQ} &=& \mathbf{x} \\ \hline (2): & \tan(30^\circ) &=& \dfrac{x}{4-CQ} \quad | \quad CQ=x \\\\ & \tan(30^\circ) &=& \dfrac{x}{4-x} \quad | \quad \tan(30^\circ) = \dfrac{\sqrt{3}}{3} \\\\ & \dfrac{\sqrt{3}}{3} &=& \dfrac{x}{4-x} \\\\ & (4-x)\sqrt{3} &=& 3x \\ & 4\sqrt{3}-x\sqrt{3} &=& 3x \\ & x\sqrt{3} + 3x&=& 4\sqrt{3} \\ & x(3+\sqrt{3})&=& 4\sqrt{3} \\\\ & x &=& \dfrac{4\sqrt{3}} {3+\sqrt{3}} \\\\ & x &=& \dfrac{4\sqrt{3}} {3+\sqrt{3}}\times \dfrac{(3-\sqrt{3})}{(3-\sqrt{3})} \\\\ & x &=& \dfrac{4\sqrt{3}(3-\sqrt{3})} {9-3} \\\\ & x &=& \dfrac{4\sqrt{3}(3-\sqrt{3})} {6} \\\\ & x &=& \dfrac{2\sqrt{3}(3-\sqrt{3})} {3} \\\\ & x &=& \dfrac{2\sqrt{3}\cdot 3 } {3} - \dfrac{2} {3} \cdot 3 \\\\ & \mathbf{x} &=& \mathbf{2\sqrt{3} - 2} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \text{area}_{[APE]} &=& 4\sqrt{3}+2x -8 \quad | \quad x=2\sqrt{3} - 2 \\ &=& 4\sqrt{3}+2(2\sqrt{3} - 2) -8 \\ &=& 8\sqrt{3} -12 \\ \mathbf{\text{area}_{[APE]}}&=& \mathbf{4(2\sqrt{3} -3)} \\ \hline \end{array}\)

 

 

laugh

May 27, 2019