Melody

avatar
UsernameMelody
Score118723
Membership
Stats
Questions 900
Answers 33647

-4
846
3
avatar+118723 
Melody  Feb 11, 2022
 #59
avatar+118723 
0

 

@@ End of Day Wrap   Fri 5/6/15   Sydney, Australia Time   11:55am   ♪ ♫

 

Hi all,

 

Our fabulous answerers today were Radix, asinus, Jerico,Alan, MathsGod1 and CPhill.  Thank you  

 

If you would like to comment on other site issues please do so on the Lantern Thread.  Thank you.    

 

Interest Posts: 

 

FTJ means For the Juniors  

1)  Non-linear simultaneous equations                      Melody      

2)  Polar and cartesian co-ordinates mix                   Thanks Alan

3)  Solve a quadratic by completing the square.        Thanks Alan

4)  Calculus,  find minimum area                              Thanks Alan and Melody

5)  Simultaneous equations.   Two circles                  Thanks Alan and CPhill

6) Order of operation       FTJ               Not answered - which child is going to answer it first     

 

                         ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Jun 6, 2015
 #50
avatar+118723 
0

Sat 6/6/15

If you would like to comment on other site issues please do so on the Lantern Thread.  Thank you.    

 

Interest Posts: 

FTJ means 'For the juniors' 

1)  Algebra Equation - A bit tricky                            Thanks asinus and Alan

2)  Co-ordinate geometry.                                       Thanks for that great answer Chris  

3)  Finding the vertex of a parabola                          Thanks Alan and Melody

4)  Finding numbers with a Ven diagram                  Thanks CPhill

5)  Graphing a log function                                       Thanks Alan and Melody

6)  Lets count elephants!                                         Thanks MathsGod1, Eloise1st and Melody

7)  More maths help sites to try    **                        Thanks Eloise1st

 

                         ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Jun 5, 2015
 #2
avatar+118723 
+10

 A container in the form of a cylinder, covered on the bottom and the top, is made to hold 8π ft3. Find the dimensions of the cylinder that will require the least amount of material, that is the surface area, to make.

 

$$\\V=\pi r^2h=8\pi\\\\
r^2h=8\\\\
r^2=\frac{8}{h}\\\\
r=\sqrt{\frac{8}{h}}\\\\
$Let surface area=A$\\\\
A=2\pi rh+2\pi r^2\\\\
A=2\pi h\sqrt{\frac{8}{h}}+2\pi \frac{8}{h}\\\\
$This will be a max or a min when $\frac{dA}{dh}=0\\\\
A=2\pi h^{0.5}\sqrt{8}+2\pi *8h^{-1}\\\\$$

 

$$\\A=2\pi h^{0.5}\sqrt{8}+2\pi *8h^{-1}\\\\
A=4\sqrt2\pi h^{0.5}+16\pi h^{-1}\\\\
\frac{dA}{dh}=2\sqrt2\pi h^{-0.5}-16\pi h^{-2}\\\\
\frac{d^2A}{dh^2}=-\sqrt2\pi h^{-1.5}+32\pi h^{-3}\\\\$$

 

$$\\$Find stat points $\frac{dA}{dh}=0\\\\
2\sqrt2\pi h^{-0.5}-16\pi h^{-2}=0\\\\
\sqrt2 h^{-0.5}-8 h^{-2}=0\\\\
\sqrt2 h^{1.5}-8=0 \qquad $I mult both sides by $ h^2\\\\
h^{1.5}=\frac{8}{\sqrt2}\\\\
h=[\frac{8}{\sqrt2}]^{2/3}\\\\
h=\frac{2^2}{2^{1/3}}\\\\
h=2^{5/3}\\\\$$

 

 

$$\frac{d^2A}{dh^2}=-\sqrt2\pi h^{-1.5}+32\pi h^{-3}\\$$

$${\mathtt{\,-\,}}{\sqrt{{\mathtt{2}}}}{\mathtt{\,\times\,}}{\mathtt{\pi}}{\mathtt{\,\times\,}}{\left({{\mathtt{2}}}^{\left({\frac{{\mathtt{5}}}{{\mathtt{3}}}}\right)}\right)}^{\left(-{\mathtt{1.5}}\right)}{\mathtt{\,\small\textbf+\,}}{\mathtt{32}}{\mathtt{\,\times\,}}{\mathtt{\pi}}{\mathtt{\,\times\,}}{\left({{\mathtt{2}}}^{\left({\frac{{\mathtt{5}}}{{\mathtt{3}}}}\right)}\right)}^{\left(-{\mathtt{3}}\right)} = {\mathtt{2.356\: \!194\: \!490\: \!192\: \!344\: \!8}}$$

 

GOOD    (I  was hoping  this answer would be positive, otherwise there would be an error)

 

$$If\; h=2^{5/3}\quad $A minimum amount of material will be used$$$

 

$$\\r=\sqrt{\frac{8}{h}}\\\\
r=\sqrt{\frac{2^3}{2^{5/3}}}\\\\
r=\sqrt{2^{4/3}}\\\\
r=2^{4/6}\\\\
r=2^{2/3}\\\\
r=\sqrt[3]{4}\\\\$$

 

So the minimum amount of material will be needed if      $$r=\sqrt[3]{4}\quad and \quad h=\sqrt[3]{32}$$

(The units are in feet)

 

This answer is identical to Alan's but our methods are a bit different     

Jun 5, 2015