Melody

avatar
UsernameMelody
Score118723
Membership
Stats
Questions 900
Answers 33647

-4
846
3
avatar+118723 
Melody  Feb 11, 2022
 #5
avatar+118723 
0
Jun 6, 2015
 #5
avatar+118723 
+8

I could make a counting question out of this!

There are 10 elephants that I will class as identical, and 10 different homes that they can go to.

Any number of elphants can go to any of the homes.  How many ways can this be done?

 

The bars represent the homes and the * represent the elephants.  

The elephants are entering the door of the hous from the left side.  

 

This would  be one combination

*|***|||**||**|**|||

1 elephant in house 1

3 elephants in house 2

NO elephants in house 3 or 4

2 elephants in house 5

No elephant in house 6

2 elephants in house 7

2 elephants in house 8

No elephants in house 9 or 10

 

Now if I put the stars in different spots the the number of elephants in one or mor houses will be different!

The last bar has to be at the end so its position cannot change and it is not used in the calculation.

Altogether there are 19 stars and bars left and I want to know how many ways I can choose 10 of those to be elephants (stars)

That is 19C10   

$${\left({\frac{{\mathtt{19}}{!}}{{\mathtt{10}}{!}{\mathtt{\,\times\,}}({\mathtt{19}}{\mathtt{\,-\,}}{\mathtt{10}}){!}}}\right)} = {\mathtt{92\,378}}$$

 

I think that is right.  There are a lot of different ways our elephants can be housed!!

  

NOTE:  I could look at this a little differently

Altogether there are 19 stars and bars left and I want to know how many ways I can choose 9 of those to be houses (bars)

This would be    19C9

$${\left({\frac{{\mathtt{19}}{!}}{{\mathtt{9}}{!}{\mathtt{\,\times\,}}({\mathtt{19}}{\mathtt{\,-\,}}{\mathtt{9}}){!}}}\right)} = {\mathtt{92\,378}}$$

See, the answer is the same!!

Jun 6, 2015