If Z^4=-5-3i Find z
First, there will be 4 forth roots because that is how it works.
I need to write -5-3i in polar form.
The easiest way to tackly this in my opinion is to graph the point. and then work out the distance r from 0+0i and the angle from the positive x axis. You can memorize formulas if you want but I can never remember those.
r = sqrt(25+9) = sqrt(34) ( I just used pythagoras's theroem from the pic)
This is in the 3rd quad so theta =[ 180+ atan(3/5)] degrees
It is not allowing me to edit my LaTex but I have used r=6 through out this solution and it should have been
r= sqrt34.
Hence all the final answers will be slightly out.
so
\(-5-3i\;\;\;=6\;[cos(180+atan(0.6))\;\;+\;\;i\;sin(180+atan(0.6))]\\ \sqrt[4]{-5-3i}=\sqrt[4]{6}\;\angle\;\alpha\qquad where \;\;\alpha =\left[\frac{180+atan(0.6)+360 k}{4} \right]\qquad \mbox{For k=0,1,2 and 3}\\ \alpha =\frac{180+atan(0.6)+360 k}{4}\\ \alpha =\frac{180+atan(0.6)}{4} + \frac{360 k}{4} \\ \alpha =\frac{180+atan(0.6)}{4} + 90k \\ \alpha =\frac{180+30.96}{4} + 90k \\ \alpha \approx 52.74 + 90k \\ \alpha \approx52.74 \quad or \quad \alpha \approx52.74+90 \quad or \quad \alpha \approx 52.74+180 \quad or \quad \alpha \approx 52.74+270 \\ \alpha \approx52.74\quad or \quad \alpha \approx 180-37.26 \quad or \quad \alpha \approx 52.74+180 \quad or \quad \alpha \approx 360-37.26 \\ \)
\(-5-3i\;\;\;=6\;[cos(180+atan(0.6))\;\;+\;\;i\;sin(180+atan(0.6))]\\ \sqrt[4]{-5-3i}=\sqrt[4]{6}\;\angle\;\alpha\qquad where \;\;\alpha =\left[\frac{180+atan(0.6)+360 k}{4} \right]\qquad \mbox{For k=0,1,2 and 3}\\ \alpha \approx52.74\quad or \quad \alpha \approx 180-37.26 \quad or \quad \alpha \approx 52.74+180 \quad or \quad \alpha \approx 360-37.26 \\ cos(52.74)\approx 0.6054\qquad sin(52.43)\approx 0.7959\\ root1:\qquad \approx \sqrt[4]{6}[cos(52.74)+isin(52.74)] \\ root1:\qquad \approx 1.5651[cos(52.74)+isin(52.74)] \\ root1:\qquad \approx 1.5651[0.6054+0.7959i] \\ root1:\qquad \approx 0.95+1.25i \\ .....\\ root2:\qquad \approx 1.5651[cos(180-37.26)+isin(180-37.26)] \\ root2:\qquad \approx 1.5651[-cos(37.26)+isin(37.26)] \\ root2:\qquad \approx 1.5651[-0.7959+0.6054i] \\ root2:\qquad \approx -1.25+0.95i \\ .....\\ root3:\qquad \approx 1.5651[cos(52.74+180)+isin(52.74+180)] \\ root3:\qquad \approx 1.5651[-cos(52.74)-isin(52.74)] \\ root3:\qquad \approx 1.5651[-0.6054-0.7959i] \\ root3:\qquad \approx -0.95-1.25i \\ .....\\ root4:\qquad \approx 1.5651[cos(360-37.26)+isin(360-37.26)] \\ root4:\qquad \approx 1.5651[cos(37.26)-isin(37.26)] \\ root4:\qquad \approx 1.5651[0.7959-0.6054i] \\ root4:\qquad \approx 1.25-0.95i \\ \)
\(root1:\qquad \approx 0.95+1.25i \\ .....\\ root2:\qquad \approx -1.25+0.95i \\ .....\\ root3:\qquad \approx -0.95-1.25i \\ .....\\ root4:\qquad \approx 1.25-0.95i \\ \)
** It will not let me edit my LaTex but each of these is a possible value of z
Here is a diagram showing -5-3i and also showing its 4 forth roots. 
