Melody

avatar
UsernameMelody
Score118723
Membership
Stats
Questions 900
Answers 33647

-4
846
3
avatar+118723 
Melody  Feb 11, 2022
 #2
avatar+118723 
+5

If    Z^4=-5-3i                      Find z

 

First, there will be 4 forth roots because that is how it works.

 

I need to write -5-3i  in polar form.

The easiest way to tackly this in my opinion is to graph the point.   and then work out the distance r from 0+0i and the angle from the positive x axis.  You can memorize formulas if you want but I can never remember those.

 

r = sqrt(25+9) = sqrt(34)       ( I just used pythagoras's theroem from the pic)

This is in the 3rd quad so theta =[ 180+  atan(3/5)]       degrees

 

It is not allowing me to edit my LaTex but I have used r=6 through out this solution and it should have been

r= sqrt34.

Hence all  the final answers will be slightly out. 

 

so

\(-5-3i\;\;\;=6\;[cos(180+atan(0.6))\;\;+\;\;i\;sin(180+atan(0.6))]\\ \sqrt[4]{-5-3i}=\sqrt[4]{6}\;\angle\;\alpha\qquad where \;\;\alpha =\left[\frac{180+atan(0.6)+360 k}{4} \right]\qquad \mbox{For k=0,1,2 and 3}\\ \alpha =\frac{180+atan(0.6)+360 k}{4}\\ \alpha =\frac{180+atan(0.6)}{4} + \frac{360 k}{4} \\ \alpha =\frac{180+atan(0.6)}{4} + 90k \\ \alpha =\frac{180+30.96}{4} + 90k \\ \alpha \approx 52.74 + 90k \\ \alpha \approx52.74 \quad or \quad \alpha \approx52.74+90 \quad or \quad \alpha \approx 52.74+180 \quad or \quad \alpha \approx 52.74+270 \\ \alpha \approx52.74\quad or \quad \alpha \approx 180-37.26 \quad or \quad \alpha \approx 52.74+180 \quad or \quad \alpha \approx 360-37.26 \\ \)

 

\(-5-3i\;\;\;=6\;[cos(180+atan(0.6))\;\;+\;\;i\;sin(180+atan(0.6))]\\ \sqrt[4]{-5-3i}=\sqrt[4]{6}\;\angle\;\alpha\qquad where \;\;\alpha =\left[\frac{180+atan(0.6)+360 k}{4} \right]\qquad \mbox{For k=0,1,2 and 3}\\ \alpha \approx52.74\quad or \quad \alpha \approx 180-37.26 \quad or \quad \alpha \approx 52.74+180 \quad or \quad \alpha \approx 360-37.26 \\ cos(52.74)\approx 0.6054\qquad sin(52.43)\approx 0.7959\\ root1:\qquad \approx \sqrt[4]{6}[cos(52.74)+isin(52.74)] \\ root1:\qquad \approx 1.5651[cos(52.74)+isin(52.74)] \\ root1:\qquad \approx 1.5651[0.6054+0.7959i] \\ root1:\qquad \approx 0.95+1.25i \\ .....\\ root2:\qquad \approx 1.5651[cos(180-37.26)+isin(180-37.26)] \\ root2:\qquad \approx 1.5651[-cos(37.26)+isin(37.26)] \\ root2:\qquad \approx 1.5651[-0.7959+0.6054i] \\ root2:\qquad \approx -1.25+0.95i \\ .....\\ root3:\qquad \approx 1.5651[cos(52.74+180)+isin(52.74+180)] \\ root3:\qquad \approx 1.5651[-cos(52.74)-isin(52.74)] \\ root3:\qquad \approx 1.5651[-0.6054-0.7959i] \\ root3:\qquad \approx -0.95-1.25i \\ .....\\ root4:\qquad \approx 1.5651[cos(360-37.26)+isin(360-37.26)] \\ root4:\qquad \approx 1.5651[cos(37.26)-isin(37.26)] \\ root4:\qquad \approx 1.5651[0.7959-0.6054i] \\ root4:\qquad \approx 1.25-0.95i \\ \)

 

\(root1:\qquad \approx 0.95+1.25i \\ .....\\ root2:\qquad \approx -1.25+0.95i \\ .....\\ root3:\qquad \approx -0.95-1.25i \\ .....\\ root4:\qquad \approx 1.25-0.95i \\ \)

**    It will not let me edit my LaTex but each of these is a possible value of z

 

Here is a diagram showing -5-3i and also showing its 4 forth roots.    laugh

 

Nov 7, 2015