ln(x^2-x-20/(x+6)^4)^1/3
\(ln(x^2-x-20/(x+6)^4)^{1/3}\\ =ln\left(\frac{x^2-x-20}{(x+6)^4}\right)^{1/3}\\ =\frac{1}{3}\left[\ln\left(\frac{x^2-x-20}{(x+6)^4}\right)\right]\\ =\frac{1}{3}\left[ln(x^2-x-20)-ln(x+6)^4\right]\\ =\frac{1}{3}\left[ln(x^2-x-20)-4ln(x+6)\right]\\ =\frac{\ln(x^2-x-20)-4ln(x+6)}{3}\\ \)