$${\frac{{{\mathtt{0.2}}}^{\left({\mathtt{1}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{2.5}}}}\right)}}{{\sqrt[{{\mathtt{3}}}]{{{\mathtt{125}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{{\mathtt{0.3}}}^{{\mathtt{3}}}}}}}{\mathtt{\,-\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\frac{{\mathtt{\pi}}}{{\sqrt{{\mathtt{5}}}}}}\right)} = -{\mathtt{0.897\: \!779\: \!501\: \!829\: \!020\: \!9}}$$
.$${\frac{{{\mathtt{0.2}}}^{\left({\mathtt{1}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{2.5}}}}\right)}}{{\sqrt[{{\mathtt{3}}}]{{{\mathtt{125}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{{\mathtt{0.3}}}^{{\mathtt{3}}}}}}}{\mathtt{\,-\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\frac{{\mathtt{\pi}}}{{\sqrt{{\mathtt{5}}}}}}\right)} = -{\mathtt{0.897\: \!779\: \!501\: \!829\: \!020\: \!9}}$$