To find x take logs of both sides:
ln(0.000061) = ln(0.5x)
Using the fact that ln(ab) = b*ln(a) you have:
ln(0.000061)=x*ln(0.5)
or x = ln(0.000061)/ln(0.5)
$${\mathtt{x}} = {\frac{{ln}{\left({\mathtt{0.000\: \!061}}\right)}}{{ln}{\left({\mathtt{0.5}}\right)}}} \Rightarrow {\mathtt{x}} = {\mathtt{14.000\: \!831\: \!231\: \!761\: \!287\: \!9}}$$
.
To find x take logs of both sides:
ln(0.000061) = ln(0.5x)
Using the fact that ln(ab) = b*ln(a) you have:
ln(0.000061)=x*ln(0.5)
or x = ln(0.000061)/ln(0.5)
$${\mathtt{x}} = {\frac{{ln}{\left({\mathtt{0.000\: \!061}}\right)}}{{ln}{\left({\mathtt{0.5}}\right)}}} \Rightarrow {\mathtt{x}} = {\mathtt{14.000\: \!831\: \!231\: \!761\: \!287\: \!9}}$$
.