+0  
 
0
658
1
avatar

.000061=.5^x

 Nov 24, 2014

Best Answer 

 #1
avatar+33661 
+5

To find x take logs of both sides:

ln(0.000061) = ln(0.5x)

 

Using the fact that ln(ab) = b*ln(a) you have:

ln(0.000061)=x*ln(0.5)

 

or x = ln(0.000061)/ln(0.5)

$${\mathtt{x}} = {\frac{{ln}{\left({\mathtt{0.000\: \!061}}\right)}}{{ln}{\left({\mathtt{0.5}}\right)}}} \Rightarrow {\mathtt{x}} = {\mathtt{14.000\: \!831\: \!231\: \!761\: \!287\: \!9}}$$

.

 Nov 24, 2014
 #1
avatar+33661 
+5
Best Answer

To find x take logs of both sides:

ln(0.000061) = ln(0.5x)

 

Using the fact that ln(ab) = b*ln(a) you have:

ln(0.000061)=x*ln(0.5)

 

or x = ln(0.000061)/ln(0.5)

$${\mathtt{x}} = {\frac{{ln}{\left({\mathtt{0.000\: \!061}}\right)}}{{ln}{\left({\mathtt{0.5}}\right)}}} \Rightarrow {\mathtt{x}} = {\mathtt{14.000\: \!831\: \!231\: \!761\: \!287\: \!9}}$$

.

Alan Nov 24, 2014

0 Online Users