+0  
 
0
860
3
avatar

(1/2)^x=32

 

 

 

Help pleez

 Oct 20, 2014

Best Answer 

 #3
avatar+129899 
+5

(1/2)^x=32

Notice that (1/2) = 2-1     and 32 = 25 ......so we have.....

(2-1)x = 25         so

2-1x = 25      now, just equate exponents

-1x = 5        divide by -1 on both sides

x = -5

 

 Oct 20, 2014
 #1
avatar+23252 
+5

(1/2) ^ x  =  32

First way:

If the unknown is an exponent, find the log of both sides:

log[ (1/2) ^ x ]  =  log( 32 )

x · log( 1/2 )  =  log( 32 )

x  =  log( 32 ) / log( 1/2 )

x  =  -5

Second way:

Write both sides with the same base:

Since  1/2  =  2^-1  and  32  =  2^5:

(2^-1)^x  =  2^5                             When you have an exponent to an exponent, multiply the exponents:

2^-x  =  2^5

-x  =  5

x  =  -5

 Oct 20, 2014
 #2
avatar+122 
+5

To solve this, you must use logarithms.

x = $${{log}}_{{\frac{{\mathtt{1}}}{{\mathtt{2}}}}}{\left({\mathtt{32}}\right)}$$

x = -5

 Oct 20, 2014
 #3
avatar+129899 
+5
Best Answer

(1/2)^x=32

Notice that (1/2) = 2-1     and 32 = 25 ......so we have.....

(2-1)x = 25         so

2-1x = 25      now, just equate exponents

-1x = 5        divide by -1 on both sides

x = -5

 

CPhill Oct 20, 2014

2 Online Users

avatar