+0  
 
+3
486
6
avatar

1^3 + 2^3 + 3^3 + 4^3 + 5^3 +.... 2014^3

Guest Aug 10, 2014

Best Answer 

 #4
avatar+27044 
+8

It's not at all obvious!  But have a look at https://proofwiki.org/wiki/Sum_of_Sequence_of_Cubes for a proof. 

Alan  Aug 10, 2014
 #1
avatar+93656 
+8

You can probably do this on the web2 calc as well but i don't know how.

anyway, I got you the answer. 

 

Melody  Aug 10, 2014
 #2
avatar+27044 
+8

Can find this from:

$$\sum_{k=1}^nk^3=\frac{n^2(n+1)^2}{4}$$

$${\frac{{\left({\mathtt{2\,014}}{\mathtt{\,\times\,}}{\mathtt{2\,015}}\right)}^{{\mathtt{2}}}}{{\mathtt{4}}}} = {\mathtt{4\,117\,267\,101\,025}}$$

Alan  Aug 10, 2014
 #3
avatar+93656 
+3

Why is that true Alan?

Is there something obvious that I am missing?

Melody  Aug 10, 2014
 #4
avatar+27044 
+8
Best Answer

It's not at all obvious!  But have a look at https://proofwiki.org/wiki/Sum_of_Sequence_of_Cubes for a proof. 

Alan  Aug 10, 2014
 #5
avatar+93656 
+3

Thanks Alan,

I'll spend more time in it. 

Melody  Aug 10, 2014
 #6
avatar+20025 
0

1^3 + 2^3 + 3^3 + 4^3 + 5^3 +.... 2014^3  

 

$$s_1 = 1+2+3+ ... + n$$

$$\begin{array}{llcl}
& (1+i)^2 &=& i^2+2i+1 \\
& (1+i)^2 - 1 &=& 1+2i \\
\hline
i=1 & \not{2^2}-1^2 &=& 1+ 2*1\\
i=2 & \not{3^2}-\not{2^2} &=& 1+ 2*2 \\
i=3 & \not{4^2}-\not{3^2} &=& 1+ 2*3 \\
... &... &...& ... \\
i=n & (1+n)^2-\not{n^2} &=& 1+2n\\
\hline
\Sigma & (1+n)^2-1&=&n+2*(\underbrace{1+2+3+...+n}_{s_1})
\end{array}\\
(1+n)^2-1&=&n+2s_1\\
n+n^2=2s_1\\
\boxed{s_1=\dfrac{n(n+1)}{2}}$$

 

$$s_2= 1^2+2^2+3^2+ ... + n^2$$

$$\begin{array}{llcl}
& (1+i)^3 &=& i^3+3i^2+3i+1 \\
& (1+i)^3 - i^3 &=& 1+3i^2+3i \\
\hline
i=1 & \not{2^3}-1^3 &=& 1+ 3*1^2+ 3*1 \\
i=2 & \not{3^3}-\not{2^3} &=& 1+ 3*2^2+ 3*2 \\
i=3 & \not{4^3}-\not{3^3} &=& 1+ 3*3^2+ 3*3 \\
... &... &...& ... \\
i=n & (1+n)^3-\not{n^3} &=& 1+ 3*n^2+ 3n \\
\hline
\Sigma & (1+n)^3-1&=&n+3*(\underbrace{1^2+2^2+3^2+...+n^2}_{s_2})+3*(\underbrace{1+2+3+...+n}_{s_1})
\end{array}\\
(1+n)^3-1 = n+3s_2+3s_1\\
(1+n)^3-1 = n+3s_2+3*\frac{n*(n+1)}{2}\\
s_2=n*\left( \frac{1}{6}+\frac{n}{2}+\frac{n^2}{3}\right)\\
s_2=\frac{n}{6}*(1+3n+2n^2)\\
\boxed{s_2=\dfrac{n}{6}(n+1)(2n+1) }$$

 

$$s_3= 1^3+2^3+3^3+ ... + n^3$$

$$\begin{array}{llcl}
& (1+i)^4 &=& i^4+4i^3+6i^2+4i+1 \\
& (1+i)^4 - i^4 &=& 1+4i^3+6i^2+4i\\
\hline
i=1 & \not{2^4}-1^4 &=& 1+ 4*1^3+ 6*1^2+ 4*1 \\
i=2 & \not{3^4}-\not{2^4} &=& 1+ 4*2^3+ 6*2^2+ 4*2 \\
i=3 & \not{4^4}-\not{3^4} &=& 1+ 4*3^3+ 6*3^2+ 4*3 \\
... &... &...& ... \\
i=n & (1+n)^4-\not{n^4} &=& 1+ 4*n^3+ 6*n^2+ 4*n\\
\hline
\Sigma & (1+n)^4-1&=&n+4*(\underbrace{1^3+2^3+3^3+...+n^3}_{s_3})
+6*(\underbrace{1^2+2^2+3^2+...+n^2}_{s_2}) +4*(\underbrace{1+2+3+...+n}_{s_1})
\end{array}\\
(1+n)^4-1 = n+4s_3+6s_2+4s_1\\
(1+n)^4-1 = n+4s_3+6*\frac{n}{6}(n+1)(2n+1)+4*\frac{n*(n+1)}{2}\\
4*s_3=n^4+4n^3+6n^2+4n-n-2n^3-3n^2-n-2n^2-2n\\
4*s_3=n^4+2n^3+n^2\\
\boxed{s_3=\dfrac{n^2*(n+1)^2}{4}}$$

$$1^3 + 2^3 + 3^3 + 4^3 + 5^3 +.... 2014^3 = \left(
\dfrac{2014*2015}{2}
\right)^2 \\
= 2029105^2\\
=4\;117\;267\;101\;025$$

heureka  Aug 21, 2014

16 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.