+0  
 
0
552
2
avatar+351 

(1/a) - (1/b) = (1/c) 

make a the subject

YEEEEEET  Feb 26, 2018
 #1
avatar
0

Solve for a:

1/a - 1/b = 1/c

 

Bring 1/a - 1/b together using the common denominator a b:

(b - a)/(a b) = 1/c

 

Cross multiply:

c (b - a) = a b

 

Expand out terms of the left hand side:

b c - a c = a b

 

Subtract a b + b c from both sides:

a (-b - c) = -b c

 

Divide both sides by -b - c:

a = (bc) / (b + c)

Guest Feb 26, 2018
 #2
avatar+20198 
0

(1/a) - (1/b) = (1/c) 

make a the subject

 

\(\begin{array}{|rcll|} \hline \dfrac{1}{a}-\dfrac{1}{b} &=& \dfrac{1}{c} \quad & | \quad +\dfrac{1}{b} \\\\ \dfrac{1}{a} &=& \dfrac{1}{c} +\dfrac{1}{b} \\\\ \dfrac{1}{a} &=& \dfrac{1}{c}\cdot \dfrac{b}{b} +\dfrac{1}{b}\cdot \dfrac{c}{c} \\\\ \dfrac{1}{a} &=& \dfrac{b}{bc} +\dfrac{c}{bc} \\\\ \dfrac{1}{a} &=& \dfrac{b+c}{bc} \\\\ \dfrac{a}{1} &=& \dfrac{bc}{b+c} \\\\ \mathbf{a} & \mathbf{=} & \mathbf{\dfrac{bc}{b+c}} \\\\ \hline \end{array}\)

 

laugh

heureka  Feb 27, 2018

6 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.