cos(pi/4) = 1/√2 sin(pi/4) = 1/√2
1 - i = √2(cos(pi/4) - i*sin(pi/4))
(1 - i)7 = (√2)7(cos(pi/4) - i*sin(pi/4))7
De Moivre's theorem says (cos(x) - i*sin(x))n = cos(nx) - i*sin(nx) so:
(1 - i)7 = (√2)7(cos(pi/4) - i*sin(pi/4))7 = 8√2*(cos(7pi/4) - i*sin(7pi/4)) = 8√2*(1/√2 - i*(-1/√2))
or (1 - i)7 = 8(1 + i)
.
cos(pi/4) = 1/√2 sin(pi/4) = 1/√2
1 - i = √2(cos(pi/4) - i*sin(pi/4))
(1 - i)7 = (√2)7(cos(pi/4) - i*sin(pi/4))7
De Moivre's theorem says (cos(x) - i*sin(x))n = cos(nx) - i*sin(nx) so:
(1 - i)7 = (√2)7(cos(pi/4) - i*sin(pi/4))7 = 8√2*(cos(7pi/4) - i*sin(7pi/4)) = 8√2*(1/√2 - i*(-1/√2))
or (1 - i)7 = 8(1 + i)
.