+0  
 
0
884
3
avatar

1.  Suppose we have a bag with 8 slips of paper in it. Six of these have a 1 on them and the other two have a 3 on them. What is the expected value of the number shown when we draw a single slip of paper?

2.  Suppose we have a bag with 8 slips of paper in it. Six of these have a 1 on them and the other two have a 3 on them. What is the expected value of a draw if we add one additional 3 to the bag?

3.  Suppose we have a bag with 8 slips of paper in it. Six of these have a 1 on them and the other two have a 3 on them. What is the expected value of a draw if we add two 3's to the bag (instead of adding just one)?

4.  Suppose we have a bag with 8 slips of paper in it. Six of these have a 1 on them and the other two have a 3 on them. How many 3's do we have to add to make the expected value equal to 2?

5.  Suppose I have a bag with 8 slips of paper in it. Six of these have a 1 on them and the other two have a 3 on them. How many 3's do I have to add to make the expected value at least 2.5?

Guest Apr 18, 2015

Best Answer 

 #1
avatar+27035 
+8

Expected value = (sum of weight*number)/(sum of weights)

 

So, for part 1:  Expected value = (6*1 + 2*3)/(6 + 2)  =  12/8  =  3/2

 

Part 2:  Expected value =  (6*1 + 3*3)/(6 + 3) = 15/9 = 5/3

 

 See if you can now do the other parts.

.

Alan  Apr 18, 2015
 #1
avatar+27035 
+8
Best Answer

Expected value = (sum of weight*number)/(sum of weights)

 

So, for part 1:  Expected value = (6*1 + 2*3)/(6 + 2)  =  12/8  =  3/2

 

Part 2:  Expected value =  (6*1 + 3*3)/(6 + 3) = 15/9 = 5/3

 

 See if you can now do the other parts.

.

Alan  Apr 18, 2015
 #2
avatar+93644 
0

Thanks Alan :)

Melody  Apr 19, 2015

51 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.