+0  
 
0
539
1
avatar

1)sin127 cos82- cos127 sin82

2)sin220+ cos220

3) sin4alpha+ sin2alpha• cos2alpha+ cos2alpha=1

4) sin2x-sinx=0

 

Thanks for the help!!!

Guest May 30, 2017
 #1
avatar+92440 
+1

1)sin127 cos82- cos127 sin82

 

Notice  that  this actually simplifies to  sin (127 - 82)  =  sin (45) =  1 / √2

 

 

2)sin^2(20)+ cos^2(20)   =   1         [ using the identity  sin^2(theta) + cos^2(theta)  = 1 ]

 

 

 

3) sin^4alpha+ sin^2alpha• cos^2alpha+ cos^2alpha=1

 

sin^4alpha  + sin^2theta  (1 - sin^2theta)  + cos^2alpha

 

sin^4alpha  + sin^2alpha  - sin^4alpha  + cos^2 alpha =

 

sin^2alpha   +  cos^2alpha   = 1          and this is true

 

 

4) sin2x-sinx=0    

 

2sinxcosx - sinx  = 0      factor

 

sinx ( 2cosx - 1)  = 0         set each factor to 0 and solve

 

sin x  = 0   at   0 + pi *n      where n is an integer

 

And for the other factor

 

2cosx  - 1  = 0       add 1 to both sides

 

2cosx  = 1            divide both sides by 2

 

oos x   = 1/2      

 

And this happens  at  pi/3 + 2pi*n    and   at    5pi/3 + 2pi*n    for some integer, n

 

 

 

cool cool cool

CPhill  May 30, 2017

43 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.