Simplify (1/(x-h-4)-1/(x-4))/h Step By Step Please
Simplify (1/(x-h-4)-1/(x-4))/h Step By Step Please
\(\small{ \begin{array}{rcl} \dfrac{ \dfrac{ 1 } { x-h-4 } - \dfrac{ 1 } { x-4 } } {h} \\ &=& \left( \dfrac{1}{h} \right) \cdot \left( \dfrac{ 1 } { x-h-4 } - \dfrac{ 1 } { x-4 } \right)\\ &=& \left( \dfrac{1}{h} \right) \cdot \left[ \dfrac{ 1\cdot(x-4) - 1\cdot (x-h-4) } { (x-h-4)\cdot (x-4) } \right]\\ &=& \left( \dfrac{1}{h} \right) \cdot \left[ \dfrac{ x -4 -x +h +4 } { (x-h-4)\cdot (x-4) } \right]\\ &=& \left( \dfrac{1}{h} \right) \cdot \left[ \dfrac{ x-x-4+4 +h} { (x-h-4)\cdot (x-4) } \right]\\ &=& \left( \dfrac{1}{h} \right) \cdot \left[ \dfrac{h} { (x-h-4)\cdot (x-4) } \right]\\ &=& \left( \dfrac{h}{h} \right) \cdot \left[ \dfrac{1} { (x-h-4)\cdot (x-4) } \right]\\ &=& \left[ \dfrac{1} { (x-h-4)\cdot (x-4) } \right]\\ \end{array} }\)
Simplify (1/(x-h-4)-1/(x-4))/h Step By Step Please
\(\small{ \begin{array}{rcl} \dfrac{ \dfrac{ 1 } { x-h-4 } - \dfrac{ 1 } { x-4 } } {h} \\ &=& \left( \dfrac{1}{h} \right) \cdot \left( \dfrac{ 1 } { x-h-4 } - \dfrac{ 1 } { x-4 } \right)\\ &=& \left( \dfrac{1}{h} \right) \cdot \left[ \dfrac{ 1\cdot(x-4) - 1\cdot (x-h-4) } { (x-h-4)\cdot (x-4) } \right]\\ &=& \left( \dfrac{1}{h} \right) \cdot \left[ \dfrac{ x -4 -x +h +4 } { (x-h-4)\cdot (x-4) } \right]\\ &=& \left( \dfrac{1}{h} \right) \cdot \left[ \dfrac{ x-x-4+4 +h} { (x-h-4)\cdot (x-4) } \right]\\ &=& \left( \dfrac{1}{h} \right) \cdot \left[ \dfrac{h} { (x-h-4)\cdot (x-4) } \right]\\ &=& \left( \dfrac{h}{h} \right) \cdot \left[ \dfrac{1} { (x-h-4)\cdot (x-4) } \right]\\ &=& \left[ \dfrac{1} { (x-h-4)\cdot (x-4) } \right]\\ \end{array} }\)