10^(i pi) = (12 e^(i x) x^2)/(1+e^(2 i x))
x = -0.359719-0.170896 i...
x = 0.359719+0.170896 i...
10^(i*pi)=((((2*sqrt(6))*e^(i*x))*sqrt6(x))/((e^((2*i)*x))+1)). X=?
((xa)b)c=xabc
\((10^i)^\pi=\)\(1+{2*\sqrt6*(e^i)^x*\sqrt6\over((e^2)^i)^x}\)
\((10^i)^\pi=\)\(1+{12\over (e^i)^x}\)
\((e^i)^x={12\over(10^\Pi)^I-1}\)
\(ix=ln12-ln((10^\pi)^i-1)\)
\(x ={ln12-ln((10^\pi)^i-1)\over i}\)