Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
982
3
avatar+693 

10^(z+2)=27

 Nov 23, 2018
 #1
avatar+199 
+2

Translating this, we get ln(10z+2)=ln(27). Now, we just apply the log rule(loga(xb)=bloga(x)) , and get  (z+2)ln(10)=ln(27).

Then, we can simplify this to be  (z+2)ln(10)=3ln(3).So, we solve it, and our final answer is z=3ln(3)ln(10)2.

 Nov 23, 2018
 #2
avatar+130474 
+2

Azsun's answer is perfectly valid...but..because we have 10 raised to a power..using the base 10 log seems more natural

 

log 10^(z + 2)   = log 27      and we can write 

 

(z + 2)  log 10   = log 27          [log 10 = 1...so...we can ignore this ]

 

z + 2    =  log 27        subtract 2 from both sides

 

z = log 27 - 2  ≈  -0.569

 

 

cool cool cool

 Nov 23, 2018
 #3
avatar+199 
+1

That seems better! Thank you, CPhill! 

azsun  Nov 23, 2018

0 Online Users