$${\mathtt{132}}{\mathtt{\,\times\,}}\left({\mathtt{123\,368}}{\mathtt{\,-\,}}{\mathtt{33}}{\mathtt{\,\times\,}}{\mathtt{y}}\right) = {\mathtt{66}}{\mathtt{\,\times\,}}\left({\mathtt{249\,103}}{\mathtt{\,-\,}}{\mathtt{27}}{\mathtt{\,\times\,}}{\mathtt{y}}\right) \Rightarrow {\mathtt{y}} = {\mathtt{\,-\,}}{\frac{{\mathtt{789}}}{{\mathtt{13}}}} \Rightarrow {\mathtt{y}} = -{\mathtt{60.692\: \!307\: \!692\: \!307\: \!692\: \!3}}$$
.$${\mathtt{132}}{\mathtt{\,\times\,}}\left({\mathtt{123\,368}}{\mathtt{\,-\,}}{\mathtt{33}}{\mathtt{\,\times\,}}{\mathtt{y}}\right) = {\mathtt{66}}{\mathtt{\,\times\,}}\left({\mathtt{249\,103}}{\mathtt{\,-\,}}{\mathtt{27}}{\mathtt{\,\times\,}}{\mathtt{y}}\right) \Rightarrow {\mathtt{y}} = {\mathtt{\,-\,}}{\frac{{\mathtt{789}}}{{\mathtt{13}}}} \Rightarrow {\mathtt{y}} = -{\mathtt{60.692\: \!307\: \!692\: \!307\: \!692\: \!3}}$$