+0  
 
0
122
1
avatar+177 

15. Drag and drop an answer to each box to correctly complete the proof.

Given: m∥nm∥n , m∠1=65∘m∠1=65∘ , m∠2=60∘m∠2=60∘ , and BD−→−BD→ bisects ∠ABC∠ABC .

Prove: m∠6=70∘

 

https://static.k12.com/nextgen_media/assets/8124235-NG_GMT_SemA_ST_Pt1_DP002_570_002.png

 

It is given that m∥nm∥n , m∠1=65∘m∠1=65∘ , m∠2=60∘m∠2=60∘ , and BD−→−BD→ bisects ∠ABC∠ABC . Because of the triangle sum theorem,  m∠3=55∘m∠3=55∘ . By the_____It is given that m∥nm∥n , m∠1=65∘m∠1=65∘ , m∠2=60∘m∠2=60∘ , and BD−→−BD→ bisects ∠ABC∠ABC . Because of the triangle sum theorem,  m∠3=55∘m∠3=55∘ . By the_____, m∠ABC=110∘m∠ABC=110∘ . m∠5=110∘m∠5=110∘ because vertical angles are congruent. Because of the_____, m∠5+m∠6=180∘m∠5+m∠6=180∘ . Substituting gives110∘+m∠6=180∘110∘+m∠6=180∘ . So, by the_____m∠6=70∘m∠6=70∘ .

 

ANSWER CHOICES

.

linear pair postulate

definition of bisector

transitive property of equality

angle addition postulate

same-side interior angles theorem

corresponding angles postulate

alternate interior angles postulate

subtraction property of equality

sii1lver  Jan 18, 2018

Best Answer 

 #1
avatar+6250 
+1

 

It is given that m || n , m∠1 = 65° , m∠2 = 60° , and BD bisects ∠ABC .

 

Because of the triangle sum theorem,  m∠3 = 55°.

 

By the definition of bisector, m∠ABC = 110°. (unsure of this one, but no other choice seems right)

 

m∠5 = 110° because vertical angles are congruent.

 

Because of the same-side interior angles theorem, m∠5 + m∠6 = 180°.

 

Substituting gives 110° + m∠6 = 180° .

 

So, by the subtraction property of equality, m∠6 = 70°

hectictar  Jan 18, 2018
Sort: 

1+0 Answers

 #1
avatar+6250 
+1
Best Answer

 

It is given that m || n , m∠1 = 65° , m∠2 = 60° , and BD bisects ∠ABC .

 

Because of the triangle sum theorem,  m∠3 = 55°.

 

By the definition of bisector, m∠ABC = 110°. (unsure of this one, but no other choice seems right)

 

m∠5 = 110° because vertical angles are congruent.

 

Because of the same-side interior angles theorem, m∠5 + m∠6 = 180°.

 

Substituting gives 110° + m∠6 = 180° .

 

So, by the subtraction property of equality, m∠6 = 70°

hectictar  Jan 18, 2018

19 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details