+0  
 
0
1159
1
avatar+284 

15. Drag and drop an answer to each box to correctly complete the proof.

Given: m∥nm∥n , m∠1=65∘m∠1=65∘ , m∠2=60∘m∠2=60∘ , and BD−→−BD→ bisects ∠ABC∠ABC .

Prove: m∠6=70∘

 

https://static.k12.com/nextgen_media/assets/8124235-NG_GMT_SemA_ST_Pt1_DP002_570_002.png

 

It is given that m∥nm∥n , m∠1=65∘m∠1=65∘ , m∠2=60∘m∠2=60∘ , and BD−→−BD→ bisects ∠ABC∠ABC . Because of the triangle sum theorem,  m∠3=55∘m∠3=55∘ . By the_____It is given that m∥nm∥n , m∠1=65∘m∠1=65∘ , m∠2=60∘m∠2=60∘ , and BD−→−BD→ bisects ∠ABC∠ABC . Because of the triangle sum theorem,  m∠3=55∘m∠3=55∘ . By the_____, m∠ABC=110∘m∠ABC=110∘ . m∠5=110∘m∠5=110∘ because vertical angles are congruent. Because of the_____, m∠5+m∠6=180∘m∠5+m∠6=180∘ . Substituting gives110∘+m∠6=180∘110∘+m∠6=180∘ . So, by the_____m∠6=70∘m∠6=70∘ .

 

ANSWER CHOICES

.

linear pair postulate

definition of bisector

transitive property of equality

angle addition postulate

same-side interior angles theorem

corresponding angles postulate

alternate interior angles postulate

subtraction property of equality

sii1lver  Jan 18, 2018

Best Answer 

 #1
avatar+7340 
+1

 

It is given that m || n , m∠1 = 65° , m∠2 = 60° , and BD bisects ∠ABC .

 

Because of the triangle sum theorem,  m∠3 = 55°.

 

By the definition of bisector, m∠ABC = 110°. (unsure of this one, but no other choice seems right)

 

m∠5 = 110° because vertical angles are congruent.

 

Because of the same-side interior angles theorem, m∠5 + m∠6 = 180°.

 

Substituting gives 110° + m∠6 = 180° .

 

So, by the subtraction property of equality, m∠6 = 70°

hectictar  Jan 18, 2018
 #1
avatar+7340 
+1
Best Answer

 

It is given that m || n , m∠1 = 65° , m∠2 = 60° , and BD bisects ∠ABC .

 

Because of the triangle sum theorem,  m∠3 = 55°.

 

By the definition of bisector, m∠ABC = 110°. (unsure of this one, but no other choice seems right)

 

m∠5 = 110° because vertical angles are congruent.

 

Because of the same-side interior angles theorem, m∠5 + m∠6 = 180°.

 

Substituting gives 110° + m∠6 = 180° .

 

So, by the subtraction property of equality, m∠6 = 70°

hectictar  Jan 18, 2018

29 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.