+0  
 
0
741
1
avatar

18=2+30*sin40*t-.5*9.81*t^2

 Mar 13, 2015

Best Answer 

 #1
avatar+118723 
+5

$${\mathtt{18}} = {\mathtt{2}}{\mathtt{\,\small\textbf+\,}}{\mathtt{30}}{\mathtt{\,\times\,}}{\mathtt{sin40}}{\mathtt{\,\times\,}}{\mathtt{t}}{\mathtt{\,-\,}}{\mathtt{0.5}}{\mathtt{\,\times\,}}{\mathtt{9.81}}{\mathtt{\,\times\,}}{{\mathtt{t}}}^{{\mathtt{2}}}$$

 

$${\mathtt{0.5}}{\mathtt{\,\times\,}}{\mathtt{9.81}} = {\frac{{\mathtt{981}}}{{\mathtt{200}}}} = {\mathtt{4.905}}$$

 

$$\\-4.908t^2+40sin40-16=0\\
\\4.908t^2-40sin40+16=0\\$$
$${\mathtt{4.908}}{\mathtt{\,\times\,}}{{\mathtt{t}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{40}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{40}}^\circ\right)}{\mathtt{\,\small\textbf+\,}}{\mathtt{16}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{t}} = {\mathtt{\,-\,}}{\frac{{\mathtt{4}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{2\pi}}}{{sin}}{\left({\frac{{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{\pi}}}{{\mathtt{9}}}}\right)}{\mathtt{\,-\,}}{\mathtt{2}}}}}{{\sqrt{{\mathtt{1\,227}}}}}}\\
{\mathtt{t}} = {\frac{{\mathtt{4}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{2\pi}}}{{sin}}{\left({\frac{{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{\pi}}}{{\mathtt{9}}}}\right)}{\mathtt{\,-\,}}{\mathtt{2}}}}}{{\sqrt{{\mathtt{1\,227}}}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{t}} = -{\mathtt{1.406\: \!665\: \!960\: \!846\: \!221\: \!3}}\\
{\mathtt{t}} = {\mathtt{1.406\: \!665\: \!960\: \!846\: \!221\: \!3}}\\
\end{array} \right\}$$

.
 Mar 13, 2015
 #1
avatar+118723 
+5
Best Answer

$${\mathtt{18}} = {\mathtt{2}}{\mathtt{\,\small\textbf+\,}}{\mathtt{30}}{\mathtt{\,\times\,}}{\mathtt{sin40}}{\mathtt{\,\times\,}}{\mathtt{t}}{\mathtt{\,-\,}}{\mathtt{0.5}}{\mathtt{\,\times\,}}{\mathtt{9.81}}{\mathtt{\,\times\,}}{{\mathtt{t}}}^{{\mathtt{2}}}$$

 

$${\mathtt{0.5}}{\mathtt{\,\times\,}}{\mathtt{9.81}} = {\frac{{\mathtt{981}}}{{\mathtt{200}}}} = {\mathtt{4.905}}$$

 

$$\\-4.908t^2+40sin40-16=0\\
\\4.908t^2-40sin40+16=0\\$$
$${\mathtt{4.908}}{\mathtt{\,\times\,}}{{\mathtt{t}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{40}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{40}}^\circ\right)}{\mathtt{\,\small\textbf+\,}}{\mathtt{16}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{t}} = {\mathtt{\,-\,}}{\frac{{\mathtt{4}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{2\pi}}}{{sin}}{\left({\frac{{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{\pi}}}{{\mathtt{9}}}}\right)}{\mathtt{\,-\,}}{\mathtt{2}}}}}{{\sqrt{{\mathtt{1\,227}}}}}}\\
{\mathtt{t}} = {\frac{{\mathtt{4}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{2\pi}}}{{sin}}{\left({\frac{{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{\pi}}}{{\mathtt{9}}}}\right)}{\mathtt{\,-\,}}{\mathtt{2}}}}}{{\sqrt{{\mathtt{1\,227}}}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{t}} = -{\mathtt{1.406\: \!665\: \!960\: \!846\: \!221\: \!3}}\\
{\mathtt{t}} = {\mathtt{1.406\: \!665\: \!960\: \!846\: \!221\: \!3}}\\
\end{array} \right\}$$

Melody Mar 13, 2015

1 Online Users