+0  
 
0
1653
2
avatar

2^3x-1=(1\8)^x

 Mar 4, 2015

Best Answer 

 #2
avatar+33652 
+5

If this is

 

$$2^{3x-1}=(\frac{1}{8})^x$$

 

then rewrite it as

 

$$\\2^{3x-1}=(\frac{1}{2^3})^x\\\\2^{3x-1}=(2^{-3})^x\\\\2^{3x-1}=2^{-3x}$$

 

So we must have

 

$$\\3x-1=-3x\\\\6x=1\\\\x=\frac{1}{6}$$

.

 Mar 4, 2015
 #1
avatar+47 
0

x=8^(-x-1)*((8^x)+1)

 Mar 4, 2015
 #2
avatar+33652 
+5
Best Answer

If this is

 

$$2^{3x-1}=(\frac{1}{8})^x$$

 

then rewrite it as

 

$$\\2^{3x-1}=(\frac{1}{2^3})^x\\\\2^{3x-1}=(2^{-3})^x\\\\2^{3x-1}=2^{-3x}$$

 

So we must have

 

$$\\3x-1=-3x\\\\6x=1\\\\x=\frac{1}{6}$$

.

Alan Mar 4, 2015

0 Online Users