2^3x-1=(1\8)^x
If this is
$$2^{3x-1}=(\frac{1}{8})^x$$
then rewrite it as
$$\\2^{3x-1}=(\frac{1}{2^3})^x\\\\2^{3x-1}=(2^{-3})^x\\\\2^{3x-1}=2^{-3x}$$
So we must have
$$\\3x-1=-3x\\\\6x=1\\\\x=\frac{1}{6}$$
.
x=8^(-x-1)*((8^x)+1)