+0  
 
0
719
1
avatar

(2√45 + √90 + 5√5) ÷ √15

 Jul 1, 2014

Best Answer 

 #1
avatar+118724 
+5

$$\frac{2\sqrt{45}+\sqrt{90}+5\sqrt5}{\sqrt{15}}\\\\
=\frac{2\sqrt{9*5}+\sqrt{9*5*2}+5\sqrt5}{\sqrt{3*5}}\\\\
=\frac{2\sqrt{9}\sqrt5+\sqrt{9}\sqrt5 \sqrt2 +5\sqrt5}{\sqrt{3}\sqrt5}\\\\
=\frac{6\sqrt5+3\sqrt5 \sqrt2 +5\sqrt5}{\sqrt{3}\sqrt5)}\\\\
=\frac{\sqrt5(6+3 \sqrt2 +5)}{\sqrt3\sqrt5}\\\\
=\frac{(11+3 \sqrt2)}{\sqrt3}\\\\
=\frac{(11+3 \sqrt2)\sqrt3}{\sqrt3 \sqrt3}\\\\
=\frac{11\sqrt3 +3 \sqrt6}{3}\\\\$$

.
 Jul 1, 2014
 #1
avatar+118724 
+5
Best Answer

$$\frac{2\sqrt{45}+\sqrt{90}+5\sqrt5}{\sqrt{15}}\\\\
=\frac{2\sqrt{9*5}+\sqrt{9*5*2}+5\sqrt5}{\sqrt{3*5}}\\\\
=\frac{2\sqrt{9}\sqrt5+\sqrt{9}\sqrt5 \sqrt2 +5\sqrt5}{\sqrt{3}\sqrt5}\\\\
=\frac{6\sqrt5+3\sqrt5 \sqrt2 +5\sqrt5}{\sqrt{3}\sqrt5)}\\\\
=\frac{\sqrt5(6+3 \sqrt2 +5)}{\sqrt3\sqrt5}\\\\
=\frac{(11+3 \sqrt2)}{\sqrt3}\\\\
=\frac{(11+3 \sqrt2)\sqrt3}{\sqrt3 \sqrt3}\\\\
=\frac{11\sqrt3 +3 \sqrt6}{3}\\\\$$

Melody Jul 1, 2014

0 Online Users