+0  
 
+5
1422
3
avatar

ax^2 +bx +c has 2 solutions, x1 and x2  x1=(-b+√Δ)/2a and x2=(−b−√Δ)2a. Is it possible that x1 + x2 = x1/x2?

 Dec 13, 2015

Best Answer 

 #2
avatar+26396 
+10

ax^2 +bx +c has 2 solutions, x1 and x2  x1=(-b+√Δ)/2a and x2=(−b−√Δ)2a. Is it possible that x1 + x2 = x1/x2? YES

 

(1)x1+x2=kx2=kx1(2)x1x2=kx1=kx2x1=k(kx1)(2)x1=k(kx1)x1=k2kx1x1+kx1=k2x1(1+k)=k2x1=k21+k(1)x1x2=kx2=x1kx2=k21+kkx2=k1+k

 


(xx1)(xx2)=0(xk21+k)(xk1+k)=0x2x(k1+k+k21+k)+k3(1+k)2=0x2x[k1+k(1+k)]+k3(1+k)2=0x2xk+k3(1+k)2=0|(1+k)2(1+k)2=ax2k(1+k)2=bx+k3=c=0

 

Example 1:

 

a=(1+k)2b=k(1+k)2c=k3k=1a=(1+1)2=4b=1(1+1)2=4c=13=14x24x+1=0ax2+bx+c=0x1,2=b±b24ac2ax1,2=4±(4)244124x1,2=4±08x1,2=48x1,2=12x1=12 or x1=12x1+x2=12+12=1x1x2=1212=1

 

 

Example 2:

 

a=(1+k)2b=k(1+k)2c=k3k=2a=(1+2)2=9b=2(1+2)2=18c=23=89x218x+8=0ax2+bx+c=0x1,2=b±b24ac2ax1,2=18±(18)249829x1,2=18±32428818x1,2=18±3618x1,2=18±618x1=18+618 or x1=18618x1=2418 or x1=1218x1=43 or x1=23x1+x2=43+23=63=2x1x2=4323=42=2

 

 

laugh

 Dec 14, 2015
 #1
avatar
+5

If x1+x2=x1/x2,

then, solving for  x1 ,

x1=x22(1x2).

Now choose a value for x2, anything other than 1, and calculate the corresponding value of x1.

For example x2 = 2 gets you x1 = -4, and the quadratic

(x2)(x+4)=x2+2x8=0.

There's an infinite number of possibilities.

 Dec 14, 2015
 #2
avatar+26396 
+10
Best Answer

ax^2 +bx +c has 2 solutions, x1 and x2  x1=(-b+√Δ)/2a and x2=(−b−√Δ)2a. Is it possible that x1 + x2 = x1/x2? YES

 

(1)x1+x2=kx2=kx1(2)x1x2=kx1=kx2x1=k(kx1)(2)x1=k(kx1)x1=k2kx1x1+kx1=k2x1(1+k)=k2x1=k21+k(1)x1x2=kx2=x1kx2=k21+kkx2=k1+k

 


(xx1)(xx2)=0(xk21+k)(xk1+k)=0x2x(k1+k+k21+k)+k3(1+k)2=0x2x[k1+k(1+k)]+k3(1+k)2=0x2xk+k3(1+k)2=0|(1+k)2(1+k)2=ax2k(1+k)2=bx+k3=c=0

 

Example 1:

 

a=(1+k)2b=k(1+k)2c=k3k=1a=(1+1)2=4b=1(1+1)2=4c=13=14x24x+1=0ax2+bx+c=0x1,2=b±b24ac2ax1,2=4±(4)244124x1,2=4±08x1,2=48x1,2=12x1=12 or x1=12x1+x2=12+12=1x1x2=1212=1

 

 

Example 2:

 

a=(1+k)2b=k(1+k)2c=k3k=2a=(1+2)2=9b=2(1+2)2=18c=23=89x218x+8=0ax2+bx+c=0x1,2=b±b24ac2ax1,2=18±(18)249829x1,2=18±32428818x1,2=18±3618x1,2=18±618x1=18+618 or x1=18618x1=2418 or x1=1218x1=43 or x1=23x1+x2=43+23=63=2x1x2=4323=42=2

 

 

laugh

heureka Dec 14, 2015
 #3
avatar+26396 
+10

ax^2 +bx +c has 2 solutions, x1 and x2  x1=(-b+√Δ)/2a and x2=(−b−√Δ)2a. Is it possible that x1 + x2 = x1/x2? YES

 

New edit, without mistake:

 

(1)x1+x2=kx2=kx1(2)x1x2=kx1=kx2x1=k(kx1)(2)x1=k(kx1)x1=k2kx1x1+kx1=k2x1(1+k)=k2x1=k21+k(1)x1x2=kx2=x1kx2=k21+kkx2=k1+k(xx1)(xx2)=0(xk21+k)(xk1+k)=0x2x(k1+k+k21+k)+k3(1+k)2=0x2x[k1+k(1+k)]+k3(1+k)2=0x2xk+k3(1+k)2=0|(1+k)2(1+k)2=ax2k(1+k)2=bx+k3=c=0

 

Example 1:

a=(1+k)2b=k(1+k)2c=k3k=1a=(1+1)2=4b=1(1+1)2=4c=13=14x24x+1=0ax2+bx+c=0x1,2=b±b24ac2ax1,2=4±(4)244124x1,2=4±08x1,2=48x1,2=12x1=12 or x2=12x1+x2=12+12=1x1x2=1212=1

 

Example 2:

a=(1+k)2b=k(1+k)2c=k3k=2a=(1+2)2=9b=2(1+2)2=18c=23=89x218x+8=0ax2+bx+c=0x1,2=b±b24ac2ax1,2=18±(18)249829x1,2=18±32428818x1,2=18±3618x1,2=18±618x1=18+618 or x2=18618x1=2418 or x2=1218x1=43 or x2=23x1+x2=43+23=63=2x1x2=4323=42=2

 

laugh

 Dec 14, 2015

0 Online Users