ax^2 +bx +c has 2 solutions, x1 and x2 x1=(-b+√Δ)/2a and x2=(−b−√Δ)2a. Is it possible that x1 + x2 = x1/x2?
ax^2 +bx +c has 2 solutions, x1 and x2 x1=(-b+√Δ)/2a and x2=(−b−√Δ)2a. Is it possible that x1 + x2 = x1/x2? YES
(1)x1+x2=k→x2=k−x1(2)x1x2=k→x1=k⋅x2→x1=k⋅(k−x1)(2)x1=k⋅(k−x1)x1=k2−k⋅x1x1+k⋅x1=k2x1(1+k)=k2x1=k21+k(1)x1x2=kx2=x1kx2=k21+kkx2=k1+k
(x−x1)(x−x2)=0(x−k21+k)(x−k1+k)=0x2−x⋅(k1+k+k21+k)+k3(1+k)2=0x2−x⋅[k1+k(1+k)]+k3(1+k)2=0x2−x⋅k+k3(1+k)2=0|⋅(1+k)2(1+k)2⏟=a⋅x2−k⋅(1+k)2⏟=b⋅x+k3⏟=c=0
Example 1:
a=(1+k)2b=−k⋅(1+k)2c=k3k=1a=(1+1)2=4b=−1⋅(1+1)2=−4c=13=14x2−4x+1=0ax2+bx+c=0x1,2=−b±√b2−4ac2ax1,2=4±√(−4)2−4⋅4⋅12⋅4x1,2=4±√08x1,2=48x1,2=12x1=12 or x1=12x1+x2=12+12=1x1x2=1212=1
Example 2:
a=(1+k)2b=−k⋅(1+k)2c=k3k=2a=(1+2)2=9b=−2⋅(1+2)2=−18c=23=89x2−18x+8=0ax2+bx+c=0x1,2=−b±√b2−4ac2ax1,2=18±√(−18)2−4⋅9⋅82⋅9x1,2=18±√324−28818x1,2=18±√3618x1,2=18±618x1=18+618 or x1=18−618x1=2418 or x1=1218x1=43 or x1=23x1+x2=43+23=63=2x1x2=4323=42=2
If x1+x2=x1/x2,
then, solving for x1 ,
x1=x22(1−x2).
Now choose a value for x2, anything other than 1, and calculate the corresponding value of x1.
For example x2 = 2 gets you x1 = -4, and the quadratic
(x−2)(x+4)=x2+2x−8=0.
There's an infinite number of possibilities.
ax^2 +bx +c has 2 solutions, x1 and x2 x1=(-b+√Δ)/2a and x2=(−b−√Δ)2a. Is it possible that x1 + x2 = x1/x2? YES
(1)x1+x2=k→x2=k−x1(2)x1x2=k→x1=k⋅x2→x1=k⋅(k−x1)(2)x1=k⋅(k−x1)x1=k2−k⋅x1x1+k⋅x1=k2x1(1+k)=k2x1=k21+k(1)x1x2=kx2=x1kx2=k21+kkx2=k1+k
(x−x1)(x−x2)=0(x−k21+k)(x−k1+k)=0x2−x⋅(k1+k+k21+k)+k3(1+k)2=0x2−x⋅[k1+k(1+k)]+k3(1+k)2=0x2−x⋅k+k3(1+k)2=0|⋅(1+k)2(1+k)2⏟=a⋅x2−k⋅(1+k)2⏟=b⋅x+k3⏟=c=0
Example 1:
a=(1+k)2b=−k⋅(1+k)2c=k3k=1a=(1+1)2=4b=−1⋅(1+1)2=−4c=13=14x2−4x+1=0ax2+bx+c=0x1,2=−b±√b2−4ac2ax1,2=4±√(−4)2−4⋅4⋅12⋅4x1,2=4±√08x1,2=48x1,2=12x1=12 or x1=12x1+x2=12+12=1x1x2=1212=1
Example 2:
a=(1+k)2b=−k⋅(1+k)2c=k3k=2a=(1+2)2=9b=−2⋅(1+2)2=−18c=23=89x2−18x+8=0ax2+bx+c=0x1,2=−b±√b2−4ac2ax1,2=18±√(−18)2−4⋅9⋅82⋅9x1,2=18±√324−28818x1,2=18±√3618x1,2=18±618x1=18+618 or x1=18−618x1=2418 or x1=1218x1=43 or x1=23x1+x2=43+23=63=2x1x2=4323=42=2
ax^2 +bx +c has 2 solutions, x1 and x2 x1=(-b+√Δ)/2a and x2=(−b−√Δ)2a. Is it possible that x1 + x2 = x1/x2? YES
New edit, without mistake:
(1)x1+x2=k→x2=k−x1(2)x1x2=k→x1=k⋅x2→x1=k⋅(k−x1)(2)x1=k⋅(k−x1)x1=k2−k⋅x1x1+k⋅x1=k2x1(1+k)=k2x1=k21+k(1)x1x2=kx2=x1kx2=k21+kkx2=k1+k(x−x1)(x−x2)=0(x−k21+k)(x−k1+k)=0x2−x⋅(k1+k+k21+k)+k3(1+k)2=0x2−x⋅[k1+k(1+k)]+k3(1+k)2=0x2−x⋅k+k3(1+k)2=0|⋅(1+k)2(1+k)2⏟=a⋅x2−k⋅(1+k)2⏟=b⋅x+k3⏟=c=0
Example 1:
a=(1+k)2b=−k⋅(1+k)2c=k3k=1a=(1+1)2=4b=−1⋅(1+1)2=−4c=13=14x2−4x+1=0ax2+bx+c=0x1,2=−b±√b2−4ac2ax1,2=4±√(−4)2−4⋅4⋅12⋅4x1,2=4±√08x1,2=48x1,2=12x1=12 or x2=12x1+x2=12+12=1x1x2=1212=1
Example 2:
a=(1+k)2b=−k⋅(1+k)2c=k3k=2a=(1+2)2=9b=−2⋅(1+2)2=−18c=23=89x2−18x+8=0ax2+bx+c=0x1,2=−b±√b2−4ac2ax1,2=18±√(−18)2−4⋅9⋅82⋅9x1,2=18±√324−28818x1,2=18±√3618x1,2=18±618x1=18+618 or x2=18−618x1=2418 or x2=1218x1=43 or x2=23x1+x2=43+23=63=2x1x2=4323=42=2