Processing math: 100%
 
+0  
 
0
2342
3
avatar

1. Let $r(\theta) = \frac{1}{1-\theta}$. What is $r(r(r(r(r(r(30))))))$ (where $r$ is applied $6$ times)?

 

2. If $f(a) = \frac{1}{1-a}$, find the product $f^{-1}(a) \times a \times f(a)$. (Assume $a \neq 0$ and $a \neq 1$.)

 Jul 17, 2018
 #1
avatar+130466 
+2

1.  r(θ)=11θ$.Whatis$r(r(r(r(r(r(30))))))$(where$r$isapplied$6$times)?

 

r(30)  =  1 / (1 -30)  = 1/-29  = -1/29

r(r(30))  =  1  / (1 - (- 1/29))   = 1 / (29/29  + 1/29)  =  1 / (30/29)  =  29/30

r (r((r(30)))  = 1  / ( 1  - 29/30)  = 1 / ( 30/30 - 29/30)  =  1  / (1/30)  = 30

r (r(r(r(30))))  = 1 / (1 - ( 30) )  =   1/ (-29) = -1/29

r (r (r(r(r(30)))))  = 1 / ( 1  -  (-1/29) )  = ( 29/29 + 1/29)  =  1 / (30/29) = 29/30

r (r (r (r(r(r(30)))))) =  1 / (1 - (29/30) )  =  1 / ( 30/30 - 29/30)  =  1/(1/30)   =  30

 

 

cool cool cool

 Jul 17, 2018
 #2
avatar+130466 
+4

f(a)=11a$,findtheproduct$f1(a)×a×f(a)$.(Assume$a0$and$a1$.)

 

 

 

Write     y  =  1  / ( 1 - a)        swap   a and y    and we want to get y by itself

 

a  = 1 / ( 1 - y)       multiply  both sides  by ( 1 - y)

 

a ( 1 - y)   =  1       divide both sides by  a

 

1 - y  =   1 /a       rearrange as

 

1 - 1 / a  = y          get a common denominator on the left side

 

(a - 1)  /  a  = y = f-1(a)       and this is the  inverse

 

So

 f-1 (a)  *  a  =     (a - 1) / a  * a     =  (a -1)

 

And this  product multiplied  by  f(a)  =   [ (a -1) ]  *  [ 1 / (1 - a) ]    =   [ (a -1) ]  * [ -  1 (a - 1) ]    =   -1

 

 

cool cool cool

f

 Jul 17, 2018
 #3
avatar+26396 
+1

1. Let $r(\theta) = \frac{1}{1-\theta}$. What is $r(r(r(r(r(r(30))))))$ (where $r$ is applied $6$ times)?

 

r(θ)=11θr(r(θ))=1111θ=1θ1θ1=1θθ=θ1θ=11θr(r(r(θ)))=11(11θ)=111+1θ=11θ=θr(r(r(r(θ))))=11θ

 

This is a cycle:

cycler(r(θ)1once11θ1twiceθ1θ13 timesθ24 times11θ25 timesθ1θ26 timesθ

 

So r(r(r(r(r(r(θ))))))=θ and r(r(r(r(r(r(30))))))=30 

 

2. If $f(a) = \frac{1}{1-a}$, find the product $f^{-1}(a) \times a \times f(a)$. (Assume $a \neq 0$ and $a \neq 1$.)

 

f(f1(a))=af(a1a)=a|see table above r(θ1θ)=θso f1(a)=a1a

 

f1(a)×a×f(a)=a1a×a×11a=a11a=1a1a=1

 

 

laugh

 Jul 18, 2018
edited by heureka  Jul 18, 2018

0 Online Users