1. Let $r(\theta) = \frac{1}{1-\theta}$. What is $r(r(r(r(r(r(30))))))$ (where $r$ is applied $6$ times)?
2. If $f(a) = \frac{1}{1-a}$, find the product $f^{-1}(a) \times a \times f(a)$. (Assume $a \neq 0$ and $a \neq 1$.)
1. r(θ)=11−θ$.Whatis$r(r(r(r(r(r(30))))))$(where$r$isapplied$6$times)?
r(30) = 1 / (1 -30) = 1/-29 = -1/29
r(r(30)) = 1 / (1 - (- 1/29)) = 1 / (29/29 + 1/29) = 1 / (30/29) = 29/30
r (r((r(30))) = 1 / ( 1 - 29/30) = 1 / ( 30/30 - 29/30) = 1 / (1/30) = 30
r (r(r(r(30)))) = 1 / (1 - ( 30) ) = 1/ (-29) = -1/29
r (r (r(r(r(30))))) = 1 / ( 1 - (-1/29) ) = ( 29/29 + 1/29) = 1 / (30/29) = 29/30
r (r (r (r(r(r(30)))))) = 1 / (1 - (29/30) ) = 1 / ( 30/30 - 29/30) = 1/(1/30) = 30
f(a)=11−a$,findtheproduct$f−1(a)×a×f(a)$.(Assume$a≠0$and$a≠1$.)
Write y = 1 / ( 1 - a) swap a and y and we want to get y by itself
a = 1 / ( 1 - y) multiply both sides by ( 1 - y)
a ( 1 - y) = 1 divide both sides by a
1 - y = 1 /a rearrange as
1 - 1 / a = y get a common denominator on the left side
(a - 1) / a = y = f-1(a) and this is the inverse
So
f-1 (a) * a = (a - 1) / a * a = (a -1)
And this product multiplied by f(a) = [ (a -1) ] * [ 1 / (1 - a) ] = [ (a -1) ] * [ - 1 (a - 1) ] = -1
f
1. Let $r(\theta) = \frac{1}{1-\theta}$. What is $r(r(r(r(r(r(30))))))$ (where $r$ is applied $6$ times)?
r(θ)=11−θr(r(θ))=11−11−θ=1−θ1−θ−1=1−θ−θ=θ−1θ=1−1θr(r(r(θ)))=11−(1−1θ)=11−1+1θ=11θ=θr(r(r(r(θ))))=11−θ
This is a cycle:
cycle…r(r(θ)1once11−θ1twiceθ−1θ13 timesθ24 times11−θ25 timesθ−1θ26 timesθ………
So r(r(r(r(r(r(θ))))))=θ and r(r(r(r(r(r(30))))))=30
2. If $f(a) = \frac{1}{1-a}$, find the product $f^{-1}(a) \times a \times f(a)$. (Assume $a \neq 0$ and $a \neq 1$.)
f(f−1(a))=af(a−1a)=a|see table above r(θ−1θ)=θso f−1(a)=a−1a
f−1(a)×a×f(a)=a−1a×a×11−a=a−11−a=−1−a1−a=−1