+0

# 2 more

+1
226
2
+2448

Sep 18, 2018

#1
+101872
+3

The first one is made a ittle easier by factoring a 2  out  of (2x + 2)  = 2(x + 1)

Now....divide each coefficient of the dividend by 2   and we get

x^5 - 3x^4  - 8x^3 - 3x^2  + 10x + 10

And we are dividing this by  (x + 1)....so we have

x^4  -4x^3 -4x^2  + 1x  + 9

x + 1  [  x^5  - 3x^4  - 8x^3  - 3x^2  + 10x  + 10 ]

-(x^4 + 1x^4)

__________________________________

-4x^4 - 8x^3

-(-4x^4 - 4x^3)

______________________________

-4x^3  - 3x^2

-(-4x^3 -4x^2)

________________________

1x^2   + 10x

-(1x^2 + 1x)

________________

9x   + 10

-(9x  + 9)

________

1

The residual polynomial  is   x^4  -4x^3 -4x^2  + 1x  + 9  R [1/ (x + 1) ]

Sep 18, 2018
#2
+101872
+3

n^3     - 8n^2    + 6n     + 9

10n + 2  [ 10n^4   - 78n^3   + 44n^2   + 102n  + 26  ]

-(10n^4 + 2n^3)

_________________________________

-80n^3  + 44n^2

-( -80n^3  - 16n^2)

____________________________

60n^2  + 102n

-(60n^2 + 12n)

____________________

90n   + 26

-(90n + 18)

_________

8

n^3  - 8n^2  +  6n  + 9    R  [ 8 / (10n + 2) ]

Sep 18, 2018