2 sinx cosx = sin x
\(\begin{array}{rcll} 2\cdot \sin{(x)}\cdot \cos{(x)} &=& \sin{(x)} \qquad & \boxed{~ \begin{array}{rcl} 2\cdot \sin{(x)}\cdot \cos{(x)} &=& \sin{(2x)} \end{array} ~}\\ \sin{(2x)}&=& \sin{(x)} \qquad & | \qquad \arcsin{()} \\ \arcsin{(\sin{(2x)})}&=& \arcsin{(\sin{(x)})} \\ 2x &=& x \qquad | \qquad - x\\ 2x-x &=& 0\\ \mathbf{x} &\mathbf{=}& \mathbf{0} \end{array}\)
2 sinx cosx = sin x
\(\begin{array}{rcll} 2\cdot \sin{(x)}\cdot \cos{(x)} &=& \sin{(x)} \qquad & \boxed{~ \begin{array}{rcl} 2\cdot \sin{(x)}\cdot \cos{(x)} &=& \sin{(2x)} \end{array} ~}\\ \sin{(2x)}&=& \sin{(x)} \qquad & | \qquad \arcsin{()} \\ \arcsin{(\sin{(2x)})}&=& \arcsin{(\sin{(x)})} \\ 2x &=& x \qquad | \qquad - x\\ 2x-x &=& 0\\ \mathbf{x} &\mathbf{=}& \mathbf{0} \end{array}\)
2 sinx cosx = sin x
2 sinx cosx - sin x =0
sinx(2cosx-1)=0
sinx = 0 or 2cosx-1=0
x=0 , 180, ..... or 2cosx=1
x= 180N or cosx=1/2
x= 180N or x= 60, 300, ....
\(x=180N \qquad or \qquad x= 2\pi N\pm60\qquad N\in Z \quad \mbox{(N is an integer)}\\ \mbox{These answers are in degrees}\)