+0  
 
0
23
1
avatar

2) the line AB has equation 3x - 4y + 5 = 0 

a) the point with coordinates (p, p+2) lies on the line AB. Find the value of the constant P

b) find the gradient of AB

c) the point A has coordinates (1,2). The point C (-5, k) is such that AC is perpendicular to AB. Find the value of K. 

D) the line AB intersects the line with equation 2x - 5y = 6 at the point D. Find the coordinates of D 

 
Guest Oct 11, 2018
 #1
avatar+2389 
+1

a)  \(x=p,~y=p+2\\ 3(p) - 4(p+2) + 5 = 0\\ 3p-4p+8 = 0\\ -p+8=0 \\ p=8\)

 

b) There are a few ways to do this.  I'd rewrite the equation for AB as

 

\(3x-4y+5=0 \\ 4y = 3x+5 \\ y = \dfrac 3 4 s + \dfrac 5 4 \\ \text{and you can read the gradient right off as }m=\dfrac 3 4\)

 

c) The key here is that the product of the slopes over perpendicular lines is -1.

 

\(m_{AC} = \dfrac{k-2}{-5-1} = -\dfrac{k-2}{6} \\ \text{we know from (a) that }m_{AB}=\dfrac 3 4 \\ m_{AC} \cdot m_{AB}=-1\\ -\dfrac{k-2}{6} \cdot \dfrac 3 4 = -1 \\ \dfrac{3k-6}{24}=1 \\ 3k=30\\ k=10\)

 

d)

\(AB: y=\dfrac 3 4 x+\dfrac 5 4\\ 2x-5y=6 : y = \dfrac 2 5 x - \dfrac 6 5 \\ \dfrac 3 4 x+\dfrac 5 4 = \dfrac 2 5 x - \dfrac 6 5 \\ \dfrac{15-8}{20}x = -\dfrac{24+25}{20}\\ \dfrac{7}{20}x=-\dfrac{49}{20} \\ x=-7 \\ y = \dfrac{2}{5}\cdot (-7)-\dfrac 6 5 = -\dfrac{20} 5 = -4\\ D=(x,y) =(-7,-4)\)

 
Rom  Oct 11, 2018

33 Online Users

avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.