+0  
 
0
556
1
avatar

2/(x^(3/7))+5/(x^(2/7))-3/(x^(1/7))=0

 Feb 23, 2015

Best Answer 

 #1
avatar+118723 
+5

$$\\\frac{2}{x^{3/7}}+\frac{5}{x^{2/7}}-\frac{3}{x^{1/7}}=0\\\\
x^{3/7}*\left(\frac{2}{x^{3/7}}+\frac{5}{x^{2/7}}-\frac{3}{x^{1/7}}\right)=x^{3/7}*0\\\\
2+5x^{1/7}-3x^{2/7}=0\\\\
let\;y=x^{1/7}\\\\
2+5y-3y^2=0\\\\
3y^2-5y-1=0\\\\
y=\frac{5\pm\sqrt{25+12}}{6}\\\\
y=\frac{5\pm\sqrt{37}}{6}\\\\
x=y^{1/7}=\left(\frac{5\pm\sqrt{37}}{6}\right)^{1/7}$$

 

I haven't checked it but I think that is somewhere near correct. 

 Feb 23, 2015
 #1
avatar+118723 
+5
Best Answer

$$\\\frac{2}{x^{3/7}}+\frac{5}{x^{2/7}}-\frac{3}{x^{1/7}}=0\\\\
x^{3/7}*\left(\frac{2}{x^{3/7}}+\frac{5}{x^{2/7}}-\frac{3}{x^{1/7}}\right)=x^{3/7}*0\\\\
2+5x^{1/7}-3x^{2/7}=0\\\\
let\;y=x^{1/7}\\\\
2+5y-3y^2=0\\\\
3y^2-5y-1=0\\\\
y=\frac{5\pm\sqrt{25+12}}{6}\\\\
y=\frac{5\pm\sqrt{37}}{6}\\\\
x=y^{1/7}=\left(\frac{5\pm\sqrt{37}}{6}\right)^{1/7}$$

 

I haven't checked it but I think that is somewhere near correct. 

Melody Feb 23, 2015

3 Online Users

avatar