Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
730
2
avatar

2^x=9^x-9

= to be 13.1476

How?

 May 25, 2015

Best Answer 

 #2
avatar+33654 
+10

Take logs of both sides and use the fact that log(a^b) = b*log(a):

 

x*ln(2) = (x-9)*ln(9)

9*ln(9) = x*(ln(9) - ln(2))

x = 9*ln(9)/(ln(9) - ln(2))

 

x=9×ln(9)(ln(9)ln(2))x=13.1476087855653318

.

 May 25, 2015
 #1
avatar+130466 
+5

I think this is supposed to be

2^x=9^(x-9 )  

 

This is probably best solved by a graph........https://www.desmos.com/calculator/kpafbtwqix

 

The intersection point is about (13.15, 9122)     ....... your answer is probably better, since Desmos rounds to 2 decimal places........!!!

 

 

 May 25, 2015
 #2
avatar+33654 
+10
Best Answer

Take logs of both sides and use the fact that log(a^b) = b*log(a):

 

x*ln(2) = (x-9)*ln(9)

9*ln(9) = x*(ln(9) - ln(2))

x = 9*ln(9)/(ln(9) - ln(2))

 

x=9×ln(9)(ln(9)ln(2))x=13.1476087855653318

.

Alan May 25, 2015

0 Online Users