We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
125
3
avatar+893 

Answer: 3

 Mar 16, 2019
 #1
avatar+893 
0

I tried to graph all 3, but how would you know where they intersect, at one point ot two points without a calc?

 Mar 16, 2019
 #2
avatar+102417 
0

Set the circles equal

 

(x - 3)^2 + (y - 4)^2  =  (x + 4)^2 + (y - 3)^2

x^2 -  6x + 9   + y^2  - 8y + 16  =  x^2 + 8x + 16 + y^2 -6y + 9

-6x - 8y =   8x - 6y

-2y = 14x

y = -7x

 

Sub this into (x - 3)^2 + (y - 4)^2 = 25

(x - 3)^2 + ( -7x - 4)^2 = 25

x^2 - 6x + 9 + 49x^2 + 56x + 16 = 25

50x^2 + 50x + 25 = 25

x ( x + 1) = 0

x = 0     or x = -1

So....the intersection of the circles will occur at   (0,0) and (-1, 7)

 

Find the intersection of    (x - 3)^2 + ( y - 4)^2 = 25   and   y = - 6x

 

(x - 3)^2 + ( -6x - 4) = 25

x^2 - 6x + 9 + 36x^2 + 48x + 16 = 25

37x^2 + 42x  = 0

x (37x + 42) = 0 

x = 0   or x = -42/37

Putting these into y = -6x

(0, 0)  and (-42/37, 252/37)

 

And find the intersection of   (x +4)^2 + ( y - 3)^2 = 25   and   y = - 6x

(x + 4)^2 + (-6x - 3)^2 = 25

x^2 + 8x + 16 + 36x^2 + 36x = 9 = 25

37x^2 + 44x = 0

x (37x + 44) = 0

x = 0   or x = -44/37

Putting these into y = -6x

(0, 0)   and ( -44/37, 264/37)

 

Note that (0,0 )   will satisfy all three

 

But only  (-1, 7) ( -42/37, 252/37)  and (-44/37, 264/37)  will satisfy  two of the three

 

 

cool cool cool

 Mar 16, 2019
 #3
avatar+893 
0

Thanks!!!

dgfgrafgdfge111  Mar 18, 2019

13 Online Users

avatar
avatar