y = 8x^3 + 36x + 54x^(-1) + 27x^(-3) take the derivative....set to 0
y ' = 24x^2 + 36 - 54x^(-2) - 81x^(-4) = 0
y ' = 3 ( 8x + 12 - 18x^(-2) - 27x^(-4) ) = 0
8x^2 + 12 - 18x^(-2) - 27x^(-4) = 0
8x^6 + 12x^4 - 18x^2 - 27 = 0 factor
4x^4 ( 2x^2 + 3) - 9(2x^2 + 3) = 0
(4x^4 - 9) (2x^2 + 3) = 0 the second factor gives a non-real answer when set to 0
So
4x^4 - 9 = 0
4x^4 = 9
x^4 = 9/4
x = (9/4)^(1/4) = [(3/2)^2] ^(1/4) = √[3/2]
Subbing this back into the original function
8[√[3/2] ]^3 + 36(√[3/2] ) + 54 / (√[3/2]) + 27 / [ √[3/2] ]^3 =
8 (3/2)(√[3/2] ) + 18√6 + 54 ( √[ 3/2] ) / (3/2) + 27 / [ (3/2) √[3/2] )
12√[3/2] + 18√6 + + 36 √[3/2] + 18 / √[3/2]
6√6 + 18√6 + 18√6 + 6√6 =
48√6