Processing math: 100%
 
+0  
 
0
899
12
avatar+937 

Can anyone solve this?

 Mar 13, 2019
 #1
avatar+12 
-1

how did you upload a picture it wont worrk for me cant figure it out msg me

 Mar 13, 2019
 #2
avatar
+1

sumfor(n, 1, 2016, (n^2) = 2733212496 mod 17 = 11

 Mar 13, 2019
 #3
avatar+118703 
+1

What calc did you put that into?

 Mar 13, 2019
 #4
avatar
+1

Hello Melody: Mathematica 11 Home Edition. I actually expressed it like this: ∑[n^2, n, 1, 2016] mod 17 = 11.

But, I also re-checked it using C++ programming language.

Guest Mar 13, 2019
edited by Guest  Mar 13, 2019
 #6
avatar+118703 
+1

Thanks

Melody  Mar 14, 2019
 #5
avatar+6251 
+1

nk=1 k2=16n(1+n)(1+2n)|n=2016=16(2016)(2017)(4033)

 

 

16(2016)(2017)(4033)(mod17)=(336(mod17))(2017(mod17))(4033(mod17))(mod17)=13114(mod17)=572(mod17)=11

.
 Mar 13, 2019
edited by Rom  Mar 13, 2019
edited by Rom  Mar 14, 2019
 #7
avatar+118703 
+1

Thanks Rom.

Melody  Mar 14, 2019
 #8
avatar+937 
0

Wait, how did you get the first summation? Is there a formula or something?

dgfgrafgdfge111  Mar 14, 2019
 #9
avatar+6251 
+1

Yeah.  That's a pretty standard result.

Rom  Mar 14, 2019
 #11
avatar+937 
-1

So what's the formula?

dgfgrafgdfge111  Mar 14, 2019
 #12
avatar+937 
0

Oh, I get it now. I see. Thanks a lot for your help (and time)!!!

dgfgrafgdfge111  Mar 14, 2019
edited by dgfgrafgdfge111  Mar 14, 2019
 #10
avatar+26396 
+2

 2016 NS 28

 

02+12+22++72+82+92+102++152+162+172+182+192++242+252+262+272+322+332+20062+20072+20082++20132+20142+20152+20162(mod17)=02+12+22++72+82=0(mod17)+92+102+112++152+162=0(mod17)+02+12+22++72+82=0(mod17)+92+102+112++152+162=0(mod17)+02+12+22++72+82=0(mod17)+92+102(mod17)=92+102(mod17)=11(mod17)

 

laugh

 Mar 14, 2019

2 Online Users