We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
123
12
avatar+480 

Can anyone solve this?

 Mar 13, 2019
 #1
avatar+12 
-1

how did you upload a picture it wont worrk for me cant figure it out msg me

 Mar 13, 2019
 #2
avatar
+1

sumfor(n, 1, 2016, (n^2) = 2733212496 mod 17 = 11

 Mar 13, 2019
 #3
avatar+101751 
+1

What calc did you put that into?

 Mar 13, 2019
 #4
avatar
+1

Hello Melody: Mathematica 11 Home Edition. I actually expressed it like this: ∑[n^2, n, 1, 2016] mod 17 = 11.

But, I also re-checked it using C++ programming language.

Guest Mar 13, 2019
edited by Guest  Mar 13, 2019
 #6
avatar+101751 
+1

Thanks

Melody  Mar 14, 2019
 #5
avatar+5172 
+1

\(\left .\sum \limits_{k=1}^n ~k^2 = \dfrac 1 6 n (1+n)(1+2n) \right |_{n=2016} = \\ \dfrac 1 6 (2016)(2017)(4033) \)

 

 

\(\dfrac 1 6 (2016)(2017)(4033) \pmod{17} = \\ (336 \pmod {17})(2017 \pmod{17})(4033 \pmod{17}) \pmod{17} = \\ 13 \cdot 11 \cdot 4 \pmod{17} = \\ 572 \pmod{17} = 11\)

.
 Mar 13, 2019
edited by Rom  Mar 13, 2019
edited by Rom  Mar 14, 2019
 #7
avatar+101751 
+1

Thanks Rom.

Melody  Mar 14, 2019
 #8
avatar+480 
0

Wait, how did you get the first summation? Is there a formula or something?

dgfgrafgdfge111  Mar 14, 2019
 #9
avatar+5172 
+1

Yeah.  That's a pretty standard result.

Rom  Mar 14, 2019
 #11
avatar+480 
-1

So what's the formula?

dgfgrafgdfge111  Mar 14, 2019
 #12
avatar+480 
0

Oh, I get it now. I see. Thanks a lot for your help (and time)!!!

dgfgrafgdfge111  Mar 14, 2019
edited by dgfgrafgdfge111  Mar 14, 2019
 #10
avatar+22299 
+2

 2016 NS 28

 

\(\begin{array}{|ll|} \hline 0^2+1^2+2^2+\ldots +7^2+8^2 &+9^2 +10^2+\ldots +15^2+16^2 \\ +17^2+18^2+19^2+\ldots +24^2+25^2 &+26^2+27^2\ldots +32^2+33^2 \\ \dots \\ +2006^2+2007^2+2008^2+\ldots +2013^2+2014^2 &+2015^2+2016^2 \pmod{17}\\ =\\ \color{red}\underbrace{0^2+1^2+2^2+\ldots+7^2+8^2}_{=0\pmod{17}}&\color{red}\underbrace{+9^2 +10^2+11^2+\ldots +15^2+16^2}_{=0\pmod{17}} \\ \color{red}\underbrace{+0^2+1^2+2^2+\ldots+7^2+8^2}_{=0\pmod{17}}&\color{red}\underbrace{+9^2 +10^2+11^2+\ldots +15^2+16^2}_{=0\pmod{17}} \\ \color{red}\dots \\ \color{red}\underbrace{+0^2+1^2+2^2+\ldots+7^2+8^2}_{=0\pmod{17}}&\color{red}+9^2+10^2 \pmod{17} \\\\ =9^2+10^2 \pmod{17}\\ =11 \pmod{17}\\ \hline \end{array}\)

 

laugh

 Mar 14, 2019

10 Online Users

avatar