We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
191
2
avatar+929 

Can anyone solve this? Answer: 5/23

 Mar 14, 2019
edited by dgfgrafgdfge111  Mar 15, 2019
 #1
avatar+6046 
+2

\(\text{What's described can happen in the following ways}\\ \text{All 3 tiles match on a letter}\\ \text{All 3 tiles match on a number}\\ \text{1 of the tiles match both the other two, but the other two do not match}\\ \text{There are three ways that the previous line can occur}\\ [(1,2),(1,3)],[(1,2),(2,3)],[(1,3),(2,3)]\)

 

\(P[\text{3 tiles match letter}]=\dfrac{4}{24}\dfrac{3}{23}= \dfrac 1 2 \dfrac{1}{23}\\ P[\text{3 tiles match number}] = \dfrac 1 2 \dfrac{1}{23}\\ P[\text{2 tiles match the other tile but not each other}] = \dfrac{8}{24}\dfrac{4}{23} = \dfrac 4 3 \dfrac{1}{23}\\ P[\text{what's described}] = 2 \times \dfrac 1 2 \dfrac{1}{23} + 3 \times \dfrac 4 3 \dfrac{1}{23} = \dfrac{1}{23}+\dfrac{4}{23} = \dfrac{5}{23}\)

.
 Mar 18, 2019
 #2
avatar+929 
+1

Thanks!!!

dgfgrafgdfge111  Mar 18, 2019

12 Online Users