+0

# 22*arcsin 45

#5
+3

NG is correct that   sin(45°)  =  $$\frac{\sqrt{2}}{2}$$

However,   arcsin(45)  ≠  $$\frac{2}{\sqrt{2}}$$

If     a  =  arcsin(45)     then     sin( a )  =  45

But there is no possible angle  a  that can make   sin( a )  =  45

The biggest possible value of  sin( a )  is  1 .

So there is no real answer to this.

Jun 15, 2019

#1
-1

Im going to do my best: sin of 45= sqrt2/2

arc sin 45=2/sqrt2

=sqrt2??????

then 22*sqrt2=22sqrt2?

Jun 15, 2019
#2
+1

Mathway (Website) says nothing can be done further.

Jun 15, 2019
#3
-4

So am i right or wrong?

NoobGuest  Jun 15, 2019
#4
-5

What do you mean further

NoobGuest  Jun 15, 2019
#5
+3

NG is correct that   sin(45°)  =  $$\frac{\sqrt{2}}{2}$$

However,   arcsin(45)  ≠  $$\frac{2}{\sqrt{2}}$$

If     a  =  arcsin(45)     then     sin( a )  =  45

But there is no possible angle  a  that can make   sin( a )  =  45

The biggest possible value of  sin( a )  is  1 .

So there is no real answer to this.

hectictar Jun 15, 2019
#6
-4 wow........ wow

NoobGuest  Jun 15, 2019