+0  
 
0
664
1
avatar

2log2^(3x)=4

 Mar 9, 2015

Best Answer 

 #1
avatar
+5

If you mean this:

$$2 log(2^{3x}) = 4$$

Then it's not too difficult to solve. First, move the 2 over.

$$log(2^{3x}) = 2$$

Then, by the logarithmic power rule,

$$log(2^{3x}) = 3x \times log(2)$$

$$3x = \frac{2}{log(2)}$$

$$x = \frac{2}{3 log(2)}$$

 Mar 9, 2015
 #1
avatar
+5
Best Answer

If you mean this:

$$2 log(2^{3x}) = 4$$

Then it's not too difficult to solve. First, move the 2 over.

$$log(2^{3x}) = 2$$

Then, by the logarithmic power rule,

$$log(2^{3x}) = 3x \times log(2)$$

$$3x = \frac{2}{log(2)}$$

$$x = \frac{2}{3 log(2)}$$

Guest Mar 9, 2015

0 Online Users