+0  
 
0
48
2
avatar+293 

Suppose a is an integer such that \(0 \le a \le 14 \) , and \(235935623_{74}-a\) is a multiple of 15. What is a?

 

The  \(235935623_{74}-a\)

means 235935623 base 74 minus a.

 Jan 28, 2019
 #1
avatar+3885 
+3

\(235935623_{74} \pmod{15} = \\ 2 + 3(14) + 5+9(14) + 3+5(14)+6+2(14)+3 \pmod{15} = \\ 285 \pmod{15} = 0\\ \text{so }a=0 \)

.
 Jan 28, 2019
 #2
avatar+21191 
+7

Suppose a is an integer such that 0 \le a \le 14, and \(235935623_{74}-a\) is a multiple of 15. What is a?
The \(235935623_{74}-a\)
means \(235935623\) base \(74\) minus \(a\).

 

\(\small{ \begin{array}{|rcll|} \hline && \mathbf{235935623_{74}\pmod{15}} \\ &\equiv& 2\cdot 74^8 +3\cdot 74^7 +5\cdot 74^6 +9\cdot 74^5 +3\cdot 74^4 +5\cdot 74^3 +6\cdot 74^2 +2\cdot 74^1 +3 \pmod{15} \\\\ && \boxed{ 74 \equiv -1 \mod 15} \\\\ &\equiv& 2\cdot (-1)^8 +3\cdot (-1)^7 +5\cdot (-1)^6 +9\cdot (-1)^5 +3\cdot (-1)^4 \\ && +5\cdot (-1)^3 +6\cdot (-1)^2 +2\cdot (-1)^1 +3 \pmod{15} \\\\ &\equiv& \not{2}-\not{3}+\not{5}-9 +3 -\not{5} +6 -\not{2} +\not{3} \pmod{15} \\ &\equiv& -9 +3 +6 \pmod{15} \\ &\equiv& 0 \pmod{15} \\\\ && \mathbf{235935623_{74} -a \equiv 0 \pmod{15} } \quad | \quad 235935623_{74}\equiv 0 \pmod{15} \\ && 0 -a \equiv 0 \pmod{15} \\ && 0 \equiv a \pmod{15} \quad | \quad 0 \pmod{15} = 0 \\ && 0 \equiv 0 \pmod{15}\Rightarrow \mathbf{a=0} \\ \hline \end{array} }\)

 

laugh

 Jan 28, 2019

10 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.