We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
143
2
avatar+335 

Suppose a is an integer such that \(0 \le a \le 14 \) , and \(235935623_{74}-a\) is a multiple of 15. What is a?

 

The  \(235935623_{74}-a\)

means 235935623 base 74 minus a.

 Jan 28, 2019
 #1
avatar+5172 
+3

\(235935623_{74} \pmod{15} = \\ 2 + 3(14) + 5+9(14) + 3+5(14)+6+2(14)+3 \pmod{15} = \\ 285 \pmod{15} = 0\\ \text{so }a=0 \)

.
 Jan 28, 2019
 #2
avatar+22263 
+9

Suppose a is an integer such that 0 \le a \le 14, and \(235935623_{74}-a\) is a multiple of 15. What is a?
The \(235935623_{74}-a\)
means \(235935623\) base \(74\) minus \(a\).

 

\(\small{ \begin{array}{|rcll|} \hline && \mathbf{235935623_{74}\pmod{15}} \\ &\equiv& 2\cdot 74^8 +3\cdot 74^7 +5\cdot 74^6 +9\cdot 74^5 +3\cdot 74^4 +5\cdot 74^3 +6\cdot 74^2 +2\cdot 74^1 +3 \pmod{15} \\\\ && \boxed{ 74 \equiv -1 \mod 15} \\\\ &\equiv& 2\cdot (-1)^8 +3\cdot (-1)^7 +5\cdot (-1)^6 +9\cdot (-1)^5 +3\cdot (-1)^4 \\ && +5\cdot (-1)^3 +6\cdot (-1)^2 +2\cdot (-1)^1 +3 \pmod{15} \\\\ &\equiv& \not{2}-\not{3}+\not{5}-9 +3 -\not{5} +6 -\not{2} +\not{3} \pmod{15} \\ &\equiv& -9 +3 +6 \pmod{15} \\ &\equiv& 0 \pmod{15} \\\\ && \mathbf{235935623_{74} -a \equiv 0 \pmod{15} } \quad | \quad 235935623_{74}\equiv 0 \pmod{15} \\ && 0 -a \equiv 0 \pmod{15} \\ && 0 \equiv a \pmod{15} \quad | \quad 0 \pmod{15} = 0 \\ && 0 \equiv 0 \pmod{15}\Rightarrow \mathbf{a=0} \\ \hline \end{array} }\)

 

laugh

 Jan 28, 2019

7 Online Users

avatar
avatar