$$\begin{array}{rll}
(2x-2)(8x-4)&=&9x-6\\
16x^2-8x-16x+8&=&9x-6\\
16x^2-24x+8&=&9x-6\\
16x^2-24x+8-9x+6&=&9x-6-9x+6\\
16x^2-33x+14&=&0\\
\triangle=33^2-4*16*14=193
\end{array}$$
$${\mathtt{x}} = {\frac{\left({\mathtt{33}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{193}}}}\right)}{{\mathtt{32}}}} \Rightarrow {\mathtt{x}} = {\mathtt{1.465\: \!388\: \!874\: \!670\: \!306\: \!4}}$$
or
$${\mathtt{x}} = {\frac{\left({\mathtt{33}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{193}}}}\right)}{{\mathtt{32}}}} \Rightarrow {\mathtt{x}} = {\mathtt{0.597\: \!111\: \!125\: \!329\: \!693\: \!6}}$$
.$$\begin{array}{rll}
(2x-2)(8x-4)&=&9x-6\\
16x^2-8x-16x+8&=&9x-6\\
16x^2-24x+8&=&9x-6\\
16x^2-24x+8-9x+6&=&9x-6-9x+6\\
16x^2-33x+14&=&0\\
\triangle=33^2-4*16*14=193
\end{array}$$
$${\mathtt{x}} = {\frac{\left({\mathtt{33}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{193}}}}\right)}{{\mathtt{32}}}} \Rightarrow {\mathtt{x}} = {\mathtt{1.465\: \!388\: \!874\: \!670\: \!306\: \!4}}$$
or
$${\mathtt{x}} = {\frac{\left({\mathtt{33}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{193}}}}\right)}{{\mathtt{32}}}} \Rightarrow {\mathtt{x}} = {\mathtt{0.597\: \!111\: \!125\: \!329\: \!693\: \!6}}$$