+0  
 
0
5
848
1
avatar

((2x)/(4pi))+((1-x))/(2)=0

Guest Jul 26, 2014

Best Answer 

 #1
avatar+92191 
+10

$$\begin{array}{rlll}
\frac{2x}{4\pi}+\frac{1-x}{2}&=&0\\\\
\frac{x}{2\pi}+\frac{1-x}{2}&=&0\\\\
2\pi \times \left(\frac{x}{2\pi}+\frac{1-x}{2}\right)&=&2\pi\times 0\\\\
x+\pi(1-x)&=&0\\\\
x+\pi-\pi x &=&0\\\\
x(1-\pi )+\pi &=&0\\\\
x(1-\pi )&=&-\pi \\\\
x&=&\frac{-\pi}{(1-\pi )} \\\\
x&=&\frac{\pi}{(\pi-1 )} \\\\

\end{array}$$

Melody  Jul 26, 2014
Sort: 

1+0 Answers

 #1
avatar+92191 
+10
Best Answer

$$\begin{array}{rlll}
\frac{2x}{4\pi}+\frac{1-x}{2}&=&0\\\\
\frac{x}{2\pi}+\frac{1-x}{2}&=&0\\\\
2\pi \times \left(\frac{x}{2\pi}+\frac{1-x}{2}\right)&=&2\pi\times 0\\\\
x+\pi(1-x)&=&0\\\\
x+\pi-\pi x &=&0\\\\
x(1-\pi )+\pi &=&0\\\\
x(1-\pi )&=&-\pi \\\\
x&=&\frac{-\pi}{(1-\pi )} \\\\
x&=&\frac{\pi}{(\pi-1 )} \\\\

\end{array}$$

Melody  Jul 26, 2014

2 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details