Or it could be 3^(2^x) = 195 in which case
Take logs:
(2^x)ln(3) = ln(195) or 2^x = ln(195)/ln(3)
Take logs again:
xln(2) = ln( ln(195)/ln(3) )
x = ln( ln(195)/ln(3) )/ln(2)
$${\mathtt{x}} = {\frac{{ln}{\left({\frac{{ln}{\left({\mathtt{195}}\right)}}{{ln}{\left({\mathtt{3}}\right)}}}\right)}}{{ln}{\left({\mathtt{2}}\right)}}} \Rightarrow {\mathtt{x}} = {\mathtt{2.262\: \!941\: \!541\: \!431\: \!602\: \!2}}$$
.
I assume this is (3^2)^x = 195 ??? if so, we have
9^x = 195 take the log of both sides
log 9^x = log 195 and by a log property, we have
x log 9 = log 195 divide both sides by log 9
x = log 195 / log 9 = about 2.4
Or it could be 3^(2^x) = 195 in which case
Take logs:
(2^x)ln(3) = ln(195) or 2^x = ln(195)/ln(3)
Take logs again:
xln(2) = ln( ln(195)/ln(3) )
x = ln( ln(195)/ln(3) )/ln(2)
$${\mathtt{x}} = {\frac{{ln}{\left({\frac{{ln}{\left({\mathtt{195}}\right)}}{{ln}{\left({\mathtt{3}}\right)}}}\right)}}{{ln}{\left({\mathtt{2}}\right)}}} \Rightarrow {\mathtt{x}} = {\mathtt{2.262\: \!941\: \!541\: \!431\: \!602\: \!2}}$$
.